留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响应面法优化日本蛇菰多糖脱色、脱蛋白工艺

秦宇 华宗 张敏 姜薇薇

秦宇,华宗,张敏,等. 响应面法优化日本蛇菰多糖脱色、脱蛋白工艺[J]. 食品工业科技,2023,44(10):177−184. doi: 10.13386/j.issn1002-0306.2022070206
引用本文: 秦宇,华宗,张敏,等. 响应面法优化日本蛇菰多糖脱色、脱蛋白工艺[J]. 食品工业科技,2023,44(10):177−184. doi: 10.13386/j.issn1002-0306.2022070206
QIN Yu, HUA Zong, ZHANG Min, et al. Optimization of Decolorization and Deproteinization of Balanophora japonica Makino Polysaccharide by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(10): 177−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070206
Citation: QIN Yu, HUA Zong, ZHANG Min, et al. Optimization of Decolorization and Deproteinization of Balanophora japonica Makino Polysaccharide by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(10): 177−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070206

响应面法优化日本蛇菰多糖脱色、脱蛋白工艺

doi: 10.13386/j.issn1002-0306.2022070206
基金项目: 云南省重大科技专项(202002AA1000051-2);云南特色植物筛选与研发服务CXO平台建设 (2022YKZY001)。
详细信息
    作者简介:

    秦宇(2001−),女,本科,研究方向:多糖提取分离纯化鉴定,E-mail:2753076190@qq.com

    通讯作者:

    姜薇薇(1982−),女,博士,讲师,研究方向:天然产物开发与研究,E-mail:17366529@163.com

  • 中图分类号: O629.12

Optimization of Decolorization and Deproteinization of Balanophora japonica Makino Polysaccharide by Response Surface Methodology

  • 摘要: 研究日本蛇菰多糖双氧水脱色、Sevag法脱蛋白的条件并对其进行工艺优化。在单因素的基础上,以多糖脱色率为指标,采用响应面法设计三因素三水平实验对蛇菰多糖的脱色条件进行优化;以蛋白质脱除率、多糖保留率为指标,选取Sevag试剂比例(氯仿:正丁醇)、样液:Sevag试剂、振荡时间为因素水平设计响应面试验,得到最佳工艺条件。结果表明,在pH为8的条件下双氧水脱色最佳工艺为:双氧水用量为20%、脱色时间为46 min、脱色温度为60 ℃,在此条件下蛇菰多糖的脱色率为84.21%。脱蛋白最佳工艺条件为:氯仿:正丁醇5:1、样液:Sevag试剂4:1、振荡时间15 min,在此条件下,多糖保留率为81.03%,蛋白质脱除率为40.44%。双氧水和Sevag法脱色脱蛋白工艺稳定,方法可行操作简单,适用于蛇菰多糖的脱色、脱蛋白。

     

  • 图  双氧水用量对脱色效果的影响

    Figure  1.  Effect of hydrogen peroxide dosage on decolorization effect

    图  脱色温度对脱色率的影响

    Figure  2.  Effect of decolorization temperature on decolorization rate

    图  脱色时间对脱色率的影响

    Figure  3.  Effect of decolorization time on decolorization rate

    图  Sevag试剂比例对多糖脱蛋白的影响

    Figure  5.  Influence of Sevag reagent ratio on polysaccharide deproteinization

    图  样液:Sevag试剂对多糖脱蛋白的影响

    Figure  6.  Effect of sample solution:Sevag reagent on polysaccharide deproteinization

    图  振荡时间对多糖脱蛋白的影响

    Figure  7.  Effect of shock time on polysaccharide deproteinization

    图  脱蛋白次数对多糖脱蛋白的影响

    Figure  8.  Influence of deproteinization times on polysaccharide deproteinization

    图  脱色时间与脱色温度对脱色率的交互影响

    Figure  4.  Interaction of decolorization time and decolorization temperature on decolorization rate

    图  Sevag试剂比例与样液:Sevag试剂比例对蛋白质脱除率的交互影响

    Figure  9.  Interaction of Sevag reagent ratio and sample solution:Sevag reagent on protein removal rate

    图  11  氯仿:正丁醇与振荡时间对蛋白质脱除率的交互影响

    Figure  11.  Interaction of Sevag reagent ratio and shock time on protein removal rate

    图  10  氯仿:正丁醇与振荡时间对蛋白质脱除率的交互影响

    Figure  10.  Interaction of Sevag reagent ratio and oscillation time on protein removal rate

    表  1  双氧水脱色工艺响应面试验因素和水平设计

    Table  1.   Response surface test factors and horizontal design of hydrogen peroxide decolorization process

    水平因素
    A双氧水用量(%)B脱色时间(min)C脱色温度(℃)
    −1104040
    0156050
    1208060
    下载: 导出CSV

    表  2  Sevag法脱蛋白工艺响应面试验因素与水平设计

    Table  2.   Response surface test factors and horizontal design of Sevag deproteinization process

    水平因素
    A 氯仿:正丁醇B 样液:Sevag试剂C振荡时间(℃)
    −13:12:110
    04:13:115
    15:14:120
    下载: 导出CSV

    表  3  双氧水响应面试验结果

    Table  3.   Experimental results of hydrogen peroxide response surface

    实验号ABCY:脱色率%
    101182.52
    200078.2
    3−1−1075.99
    401−177.74
    5−10−172.59
    600079.02
    700079.12
    810−174.61
    9−10180.22
    101−1079.67
    11−11078.66
    1201181.14
    1300079.67
    1410181.42
    150−1−171.02
    1611081.23
    1700079.58
    下载: 导出CSV

    表  4  方差分析结果

    Table  4.   Analysis of variance results

    方差来源离差平方和自由度均方FP显著性
    模型156.67917.4145.16<0.0001**
    A双氧水用量11.21111.2129.080.0010**
    B脱色时间11.45111.4529.700.0010**
    C脱色温度107.601107.60279.12<0.0001**
    AB0.3110.310.800.4011
    AC0.1710.170.440.5302
    BC16.40116.4042.550.0003**
    A21.3311.333.460.1052
    B20.4610.461.210.3085
    C27.6217.6219.770.0030**
    残差2.7070.39
    失拟项1.3330.441.290.3917
    纯误差1.3740.34
    总离差159.3716
    注:R2=0.9831;“*”表示P<0.05显著;“**”表示P<0.01极显著。
    下载: 导出CSV

    表  5  脱蛋白响应面剂验结果

    Table  5.   Results of deproteinization response surface experiment

    实验号ABCY1:多糖保留率(%)Y2:蛋白质脱除率(%)
    10−1055.3527.82
    20−1156.1142.33
    301162.9638.4
    401−155.8633.26
    510160.4336.89
    600073.1133.07
    700074.3832.92
    800078.1832.86
    9−10−149.0126.61
    1011084.5339.92
    1100070.5733.47
    121−1072.645.36
    13−10159.1642.64
    1400070.3233.61
    1510−163.2235.08
    16−11066.0144.75
    17−1−1059.4139.61
    下载: 导出CSV

    表  6  多糖保留率方差分析结果

    Table  6.   Analysis of variance of polysaccharide retention rate results

    方差来源离差平方和自由度均方FP显著性
    模型1339.779148.8611.590.0020**
    A 氯仿:正丁醇278.361278.3621.670.0023**
    B样液:Sevag试剂83.79183.796.520.0379*
    C振荡时间28.96128.962.250.1769
    AB7.1017.100.550.4813
    AC41.86141.863.260.1140
    BC10.05110.050.780.4058
    A25.5215.520.430.5331
    B29.8519.850.770.4101
    C2850.481850.4866.22<0.0001**
    残差89.90712.84
    失拟项48.55316.181.570.3293
    纯误差41.35410.34
    总离差1429.6716
    注:R2=0.9371;“*”表示P<0.05显著;“**”表示P<0.01极显著。
    下载: 导出CSV

    表  7  蛋白质脱除率方差分析表

    Table  7.   Analysis of variance of protein removal rate

    方差来源离差平方和自由度均方FP显著性
    模型482.53953.61224.07<0.0001**
    A 氯仿:正丁醇1.6611.666.920.0339*
    B样液:Sevag试剂0.1810.180.760.4108
    C振荡时间175.691175.69734.24<0.0001**
    AB27.98127.98116.95<0.0001**
    AC50.55150.55211.27<0.0001**
    BC21.95121.9591.73<0.0001**
    A286.72186.72362.42<0.0001**
    B292.45192.45386.36<0.0001**
    C224.64124.64102.99<0.0001**
    残差1.6770.24
    失拟项1.2230.413.620.1230
    纯误差0.4540.11
    总离差484.2016
    注:R2=0.9965;“*”表示P<0.05显著;“**”表示P<0.01极显著。
    下载: 导出CSV
  • [1] 陶汝俊, 徐湘婷. 蛇菰属植物化学成分和药理活性研究进展[J]. 中国民族民间医药,2017,26(7):73−78. [TAO R J, XU X T. Research progress on chemical constituents and pharmacological activities of zizania SPP[J]. Chinese Ethnic Folk Medicine,2017,26(7):73−78.
    [2] 思茅地区民族传统医药研究所. 拉祜族常见药[M]. 昆明: 云南民族出版社, 1986.

    Simao Institute of Traditional Ethnic Medicine. Chinese Herbal medicine of lahu nationality [M]. Kunming: Yunnan Nationalities Publishing House, 1986.
    [3] 庄远杯, 林大都, 李云霞, 等. 红冬蛇菰的研究概况[J]. 中国民族民间医药,2017,26(8):60−62. [ZHUANG Y B, LIN D D, LI Y X, et al. Research status of wild mushroom[J]. Chinese Folk Medicine,2017,26(8):60−62.
    [4] Editorial Board of China Herbal, State Administration of Traditional Chinese Medicine, China. China Herbal[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1999.
    [5] LIN T L, SHU C C, CHEN Y M, et al. Like cures like: Pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome[J]. Frontiers in Pharmacology,2020,11:554. doi: 10.3389/fphar.2020.00554
    [6] 彭梅, 张振东, 杨娟. 14种多糖对小鼠S_(180)肉瘤抑制活性筛选[J]. 山地农业生物学报,2011,30(1):56−59. [PENG M, ZHANG Z D, YANG J. Screening of 14 polysaccharides against S_(180) sarcoma in mice[J]. Journal of Mountain Agricultural Biology,2011,30(1):56−59. doi: 10.3969/j.issn.1008-0457.2011.01.012
    [7] WANG X, HUO X Z, LIU Z, et al. Investigations on the anti-aging activity of polysaccharides from Chinese yam and their regulation on klotho gene expression in mice[J]. Journal of Molecular Structure,2020,1208:127895. doi: 10.1016/j.molstruc.2020.127895
    [8] LI Q Q, HU J L, NIE Q X, et al. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration[J]. Science China Life Sciences,2020,64:117−132.
    [9] 杨庆伟, 王芃, 全迎萍. 灰树花子实体多糖硫酸酯化及抗凝血活性研究[J]. 北京联合大学学报,2022,36(2):52−56. [YANG Q W, WANG P, QUAN Y P. Study on sulfation and anticoagulant activity of polysaccharides from fruiting body of grifola frondosa[J]. Journal of Beijing union university,2022,36(2):52−56.
    [10] 陶遵威, 郑夺, 邸明磊, 等. 植物多糖的研究进展[C]//中药及天然产物与健康滨海论坛论文集, 2010: 148-152.

    TAO Z W, ZHENG D, DI M L, et al. Research progress of plant polysaccharides [C]// Journal of Traditional Chinese Medicine, Natural Products and Healthy Coastal Forum, 2010: 148-152.
    [11] 石雪萍. 植物多糖研究进展[J]. 粮食与油脂,2005,18(8):8. [SHI X P. Research progress of the plant polysaccharides[J]. Grain and Oils,2005,18(8):8. doi: 10.3969/j.issn.1008-9578.2005.08.002
    [12] 李倩倩, 陈贵元. 刺梨果多糖提取过程中脱蛋白和脱色方法研究[J]. 安徽农业科学,2022,50(11):162−166, 183. [LI Q Q, CHEN G Y. Study on the methods of deproteinization and decolorization of polysaccharide from Rosa roxerus[J]. Journal of Anhui Agricultural Sciences,2022,50(11):162−166, 183.
    [13] 李洁, 陈琳, 刘海棠, 等. 银条菜粗多糖脱蛋白的方法研究[J]. 天津科技大学学报,2022,37(1):18−22, 27. [LI J, CHEN L, LIU H T, et al. Study on the method of deproteinization of crude polysaccharide from Agaricus japonicus[J]. Journal of Tianjin University of Science and Technology,2022,37(1):18−22, 27.
    [14] 郭慧静, 张伟达, 陈国刚. 蒲公英多糖脱色脱蛋白方法及其降血糖活性研究[J]. 食品研究与开发,2020,41(3):24−28. [GUO H J, ZHANG W D, CHEN G G. Study on decolorization and deproteinization of dandelion polysaccharide and its hypoglycemic activity[J]. Food Research and Development,2020,41(3):24−28.
    [15] 何美佳, 刘晓, 唐翠翠, 等. 多糖脱蛋白方法的研究进展[J]. 中国海洋药物,2019,38(3):82−86. [HE M J, LIU X, TANG C C. Research progress of polysaccharide deproteinization methods[J]. China Marine Medicine,2019,38(3):82−86.
    [16] 付学鹏, 杨晓杰. 植物多糖脱色技术的研究[J]. 食品研究与开发,2007,28(11):166−169. [FU X P, YANG X J. Study on decolorization technology of plant polysaccharides[J]. Food Research and Development,2007,28(11):166−169. doi: 10.3969/j.issn.1005-6521.2007.11.051
    [17] 车向前, 常明泉. 中药植物色素脱色工艺的应用[J]. 实用药物与临床,2017,20(8):979−982. [CHE X Q, CHANG M Q. Application of plant pigment decolorization technology for traditional Chinese medicine[J]. Practical Drugs and Clinic,2017,20(8):979−982.
    [18] 孙莹, 纪跃芝, 马爱民, 等. 水提-醇沉法提取大黄多糖工艺优化研究[J]. 中国实用医药,2010,5(18):6−8. [SUN Y, JI Y Z, MA A M, et al. Optimization of rhubarb polysaccharide extraction by water extraction and alcohol precipitation[J]. China Practical Medicine,2010,5(18):6−8.
    [19] 赵艳, 王白娟, 杨青松等. 红雪茶多糖过氧化氢脱色工艺优化[J]. 南方农业学报,2016,47(5):710−714. [ZHAO Y, WANG B J, YANG Q S, et al. Optimization of hydrogen peroxide decolorization technology of red snow tea polysaccharide[J]. Journal of Southern Agriculture,2016,47(5):710−714. doi: 10.3969/j:issn.2095-1191.2016.05.710
    [20] 杨勤, 谷文超, 周浓, 等. 苯酚-硫酸法与蒽酮-硫酸法测定地参多糖的比较研究[J]. 食品科技,2020,45(1):343−350. [YANG Q, GU W C, ZHOU N, et al. Comparative study of phenol-sulfuric acid method and anthrone-sulfuric acid method for the determination of polysaccharides from radix ginseng[J]. Food Science and Technology,2020,45(1):343−350.
    [21] 谢心文, 门磊, 孙怡, 等. 蒽酮-硫酸法测定复方木鸡颗粒中粗多糖[J]. 中成药,2019,41(7):1685−1687. [XIE X W, MEN L, SUN Y, et al. Determination of crude polysaccharide in compound muji granules by anthrone-sulfuric acid method[J]. Chinese Patent Medicine,2019,41(7):1685−1687. doi: 10.3969/j.issn.1001-1528.2019.07.039
    [22] 杨静, 白冰, 王宁, 张改红. 考马斯亮蓝法对烟草薄片涂布液中蛋白质含量的测定[J]. 湖北农业科学,2017,56(5):946−947,950. [YANG J, BAI B, WANG N, ZHANG G H. Determination of protein content in tobacco coating liquid by coomassie brilliant blue method[J]. Hubei Agricultural Sciences,2017,56(5):946−947,950.
    [23] 汪荣斌, 秦亚东, 周娟娟. 青钱柳叶多糖双氧水脱色工艺研究[J]. 辽宁中医药大学学报,2016,18(9):60−62. [WANG R B, QIN Y D, ZHOU J J. Study on decolorization technology of polysaccharides from leaves of Cyrrhizoma chinensis[J]. Journal of Liaoning University of Traditional Chinese Medicine,2016,18(9):60−62.
    [24] 刘冲英, 蒲定涛, 任佳妮, 等. 陕产地黄多糖的纯化及抗氧化活性研究[J]. 化学与生物工程,2020,37(10):15−21. [LIU C Y, PU D T, REN J N, et al. Purification and antioxidant activity of yellow polysaccharide from Shaanxi[J]. Chemical and Biological Engineering,2020,37(10):15−21. doi: 10.3969/j.issn.1672-5425.2020.10.004
    [25] 经嘉, 廖启元. 猫爪草多糖双氧水脱色工艺研究[J]. 济宁医学院学报,2018,41(6):384−387. [JING J, LIAO Q Y. Study on the decolorization process of polysaccharide from catenopus rubra with hydrogen peroxide[J]. Journal of Jining Medical College,2018,41(6):384−387. doi: 10.3969/j.issn.1000-9760.2018.06.002
    [26] 张萍, 贺茂萍, 殷力, 葛秋萍. 石榴皮多糖的Sevage法除蛋白工艺研究[J]. 食品科技,2013,38(12):219−222, 231. [ZHANG P, HE M P, YIN L, GE Q P. Study on removal of polysaccharides from pomegranate peel by Sevage method[J]. Food Science and Technology,2013,38(12):219−222, 231. doi: 10.13684/j.cnki.spkj.2013.12.049
    [27] 曾杰, 房海灵, 梁呈元, 等. 无花果粗多糖脱色工艺优化及其吸附性能研究[J]. 中成药,2022,44(2):537−542. [ZENG J, FANG H L, LIANG C Y, et al. Study on decolorization process optimization and adsorption performance of crude polysaccharide from FIG[J]. Chinese Patent Medicine,2022,44(2):537−542.
    [28] 亓希武, 房海灵, 陈泽群, 梁呈元, 吕寒. 桃胶多糖脱蛋白工艺研究[J]. 现代食品,2021(8):104−107. [QI X W, FANG H J, CHENG Z Q, et al. Study on deproteinization technology of peach gum polysaccharide[J]. Modern Food,2021(8):104−107.
    [29] 王乐, 靳学远, 霍智文. 桑枝多糖酶法脱蛋白工艺优化及理化特性研究[J]. 中国食品添加剂,2022,33(7):136−143. [WANG L, JIN X Y, HUO Z W. Study on optimization of enzymatic deproteinization process and physicochemical properties of polysaccharides from mulberry branch[J]. China Food Additives,2022,33(7):136−143.
    [30] 王莹, 李锋涛, 黄美子, 等. 黄精多糖脱蛋白工艺及其抗氧化活性[J]. 食品工业,2021,42(12):57−62. [WANG Y, LI F T, HHUANG M Z, et al. Deproteinization process and antioxidant activity of polysaccharides from Rhizoma polygonatum[J]. Food Industry,2021,42(12):57−62.
    [31] 刘冲英, 陈子龙, 王睿, 等. 地黄多糖脱蛋白工艺研究[J]. 化学与生物工程,2020,37(11):46−50. [LIU C Y, CHEN Z L, WANG R, et al. Study on deproteinization of polysaccharides from rehmannia glutinosa[J]. Chemical and Biological Engineering,2020,37(11):46−50.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  56
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回