留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谷氨酰胺转氨酶预交联改善CaSO4诱导大豆分离蛋白凝胶性的研究

王宇琦 罗凯云 王旭峰

王宇琦,罗凯云,王旭峰. 谷氨酰胺转氨酶预交联改善CaSO4诱导大豆分离蛋白凝胶性的研究[J]. 食品工业科技,2023,44(9):119−126. doi: 10.13386/j.issn1002-0306.2022070217
引用本文: 王宇琦,罗凯云,王旭峰. 谷氨酰胺转氨酶预交联改善CaSO4诱导大豆分离蛋白凝胶性的研究[J]. 食品工业科技,2023,44(9):119−126. doi: 10.13386/j.issn1002-0306.2022070217
WANG Yuqi, LUO Kaiyun, WANG Xufeng. Improvement of CaSO4-Induced Gelation Properties of Soybean Protein Isolate by Pre-crosslinking with Transglutaminase[J]. Science and Technology of Food Industry, 2023, 44(9): 119−126. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070217
Citation: WANG Yuqi, LUO Kaiyun, WANG Xufeng. Improvement of CaSO4-Induced Gelation Properties of Soybean Protein Isolate by Pre-crosslinking with Transglutaminase[J]. Science and Technology of Food Industry, 2023, 44(9): 119−126. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070217

谷氨酰胺转氨酶预交联改善CaSO4诱导大豆分离蛋白凝胶性的研究

doi: 10.13386/j.issn1002-0306.2022070217
基金项目: 国家自然科学基金(32101986);福建省自然科学基金(2020J05128)。
详细信息
    作者简介:

    王宇琦(1998−),女,硕士研究生,研究方向:食品蛋白质功能与性质,E-mail:296139291@qq.com

    通讯作者:

    王旭峰(1988−),男,博士,副教授,研究方向:食品蛋白质功能与性质,E-mail:xufengw@csust.edu.cn

  • 中图分类号: TS201.1

Improvement of CaSO4-Induced Gelation Properties of Soybean Protein Isolate by Pre-crosslinking with Transglutaminase

  • 摘要: 酶法改性能够有效提升大豆蛋白的凝胶性。为了探讨谷氨酰胺转氨酶(transglutaminase, TGase)预交联对盐诱导大豆分离蛋白凝胶性的影响,通过控制酶浓度、预交联时间制备不同预交联程度的大豆分离蛋白(soy protein isolate,SPI)溶液,并研究其在CaSO4作用下的成胶性能。结果显示,与未经TGase处理的SPI相比,TGase适度预交联能够显著提升SPI的凝胶品质。经3~5 U/g TGase预交联20 min或3 U/g TGase预交联20~30 min后,SPI凝胶性得到了不同程度的提升,其中弹性模量、屈服应力、屈服应变、持水率最大分别提高了124.5%、269.0%、135.0%及53.0%。然而,过度预交联产生过大的蛋白聚集体,导致最终形成的凝胶结构粗糙、多孔,凝胶强度、持水力等均显著下降(P<0.05)。由此可见,合理利用TGase对蛋白进行预交联处理能够改善SPI凝胶制品品质,对于TGase在食品工业中的应用及传统豆制品质构改良具有重要的指导意义。

     

  • 图  不同TGase预交联处理SPI聚集体颗粒的粒径分布

    注:A:不同TGase浓度;B:不同TGase预交联时间;图3~图6同。

    Figure  1.  The particle size distribution of SPI aggregates with different TGases pre-crosslinking treatments

    图  不同TGase预交联处理SPI的SDS-PAGE

    注:1:Marker;2:未经TGase预交联的热处理后的SPI;3~6:TGase浓度分别为1、3、5、7 U/g,预交联20 min;7~10:TGase预交联时间分别为10、20、30、40 min,TGase浓度为3 U/g。

    Figure  2.  The SDS-PAGE of SPI with different TGases pre-crosslinking treatments

    图  不同TGase预交联处理SPI凝胶过程中弹性模量随时间的变化

    Figure  3.  The change of G′ with time and temperature during the gelation process of SPI with different TGases pre-crosslinking treatments

    图  不同TGase预交联处理SPI凝胶的频率扫描

    Figure  4.  Frequency sweep of SPI gels with different TGases pre-crosslinking treatments

    图  不同TGase预交联处理SPI凝胶的大形变测试

    Figure  5.  Large deformation of SPI gels with different TGase pre-crosslinking treatments

    图  不同TGase预交联处理SPI凝胶的持水力

    注:不同小写字母(a~d)表示不同样品之间存在显著性差异(P<0.05)。

    Figure  6.  The WHC of SPI gels with different TGase pre-crosslinking treatments

    图  不同TGase预交联处理SPI凝胶的微观结构

    注:A~E:0、1、3、5、7 U/g TGase预交联20 min;a~e:TGase浓度3 U/g,预交联时间0、10、20、30、40 min。

    Figure  7.  Microstructures of SPI gels with different TGase pre-crosslinking treatments

    表  1  不同TGase预交联处理SPI凝胶温度扫描终点G′、频率扫描幂律模型拟合的n值、屈服应力和屈服应变

    Table  1.   The G′ value, n value of power law model fitting, fracture stress and strain of SPI gels with different TGases pre-crosslinking treatments

    预交联程度G′ (Pa)n应力(Pa)应变(%)
    空白1059.85±105.80d0.1040±0.0001 a508.00±62.80d43.83±5.78d
    1 U/g2056.90±884.60b0.1020±0.0014 a1163.60±55.44c65.65±1.48c
    浓度3 U/g2379.15±18.00a0.0937±0.0005b1474.60±126.70b91.00±5.80b
    5 U/g1617.50±12.02c0.0903±0.0001c1874.50±72.80a103.00±2.83a
    7 U/g1417.00±18.38c0.0013±0.0001d1742.95±215.00ab99.05±2.76ab
    10 min1377.45±129.40c0.0980±0.0016a620.67±98.10cd50.55±5.73cd
    时间20 min2379.15±18.00a0.0937±0.0005a1474.67±126.70a91.00±5.80a
    30 min1792.67±138.90b0.1011±0.0031a1252.00±89.10b70.70±5.66b
    40 min1830.95±120.30b0.0936±0.0013b762.50±53.03c62.65±5.73bc
    注:不同小写字母(a~d)表示同组内不同样品之间存在显著性差异(P<0.05)。
    下载: 导出CSV
  • [1] ZHAO H, CHEN J, HEMAR Y, et al. Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides[J]. Food Chemistry,2020,310:125983. doi: 10.1016/j.foodchem.2019.125983
    [2] ZHU Q, ZHAO L, ZHANG H, et al. Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel[J]. Food Chemistry,2017,220:452−459. doi: 10.1016/j.foodchem.2016.10.016
    [3] ZHAO Y Y, CAO F H, LI X J, et al. Effects of different salts on the gelation behaviour and mechanical properties of citric acid-induced tofu[J]. International Journal of Food Science & Technology,2020,55(2):785−794.
    [4] 王旭峰. CaSO4诱导大豆分离蛋白乳状液凝胶性质影响因素的研究[D]. 无锡: 江南大学, 2017.

    WANG X F. Study of influencing factors on the properties of soy protein isolate emulsion gels induced by CaSO4[D]. Wuxi: Jiangnan University, 2017.
    [5] 孟旭, 吴立业, 程超. 豆腐凝固过程的研究进展[J]. 中国调味品,1992(7):2−5. [MENG X, WU L Y, CHENG C. Research progress in tofu solidification process[J]. China Condiment,1992(7):2−5.
    [6] MYLLARINEN P, BUCHERT J, AUTIO K. Effect of transglutaminase on rheological properties and microstructure of chemically acidified sodium caseinate gels[J]. International Dairy Journal,2007,17(7):800−807. doi: 10.1016/j.idairyj.2005.10.031
    [7] 任凯. 豆腐的物性评价模型构建及感官品质优化研究[D]. 南昌: 南昌大学, 2019.

    REN K. Establishment of tofu physical property evaluation model and sensory quality optimization[D]. Nanchang: Nanchang University, 2019.
    [8] ERDEM N, BABAOGLU A S, POCAN H B, et al. The effect of transglutaminase on some quality properties of beef, chicken, and turkey meatballs[J]. Journal of Food Processing and Preservation,2020,44(10):14158.
    [9] ALVES M C, PAULA M M D O, COSTA C G C D, et al. Restructured fish cooked ham: Effects of the use of carrageenan and transglutaminase on textural properties[J]. Journal of Aquatic Food Product Technology,2021,30(4):451−461. doi: 10.1080/10498850.2021.1895942
    [10] 汪长青. 预处理对TG酶促小麦与大豆蛋白混合凝胶性质的影响[D]. 合肥: 合肥工业大学, 2018.

    WANG C Q. Effect of physicochemical pretreatment on transglutaminase-set wheat gluten and soy protein isolate mixture gel[D]. Hefei: Hefei University of Technology, 2018.
    [11] 臧学丽, 陈光. 转谷氨酰胺酶对大豆蛋白凝胶特性及结构的影响[J]. 西北农林科技大学学报(自然科学版),2018,46(1):86−94. [ZANG X L, CHEN G. Influence of transglutaminase on soybean protein gel preparation and structure[J]. Journal of Northwest A & F University (Natural Science Edition),2018,46(1):86−94.
    [12] YASIR S B M, SUTTON K H, NEWBERRY M P, et al. The impact of transglutaminase on soy proteins and tofu texture[J]. Food Chemistry,2007,104(4):1491−1501. doi: 10.1016/j.foodchem.2007.02.026
    [13] DUARTE L, MATTE C R, BIZARRO C V, et al. Review transglutaminases: Part II-industrial applications in food, biotechnology, textiles and leather products[J]. World Journal of Microbiology & Biotechnology,2019,36(1):1−20.
    [14] EISSA A S, KHAN S A. Acid-induced gelation of enzymatically modified, preheated whey proteins[J]. Journal of Agricultural & Food Chemistry,2005,53(12):5010−5017.
    [15] JAROS D, JACOB M, OTTO C, et al. Excessive cross-linking of caseins by microbial transglutaminase and its impact on physical properties of acidified milk gels[J]. International Dairy Journal,2010,20(5):321−327. doi: 10.1016/j.idairyj.2009.11.021
    [16] GUO Y, HU H, WANG Q, et al. A novel process for peanut tofu gel: its texture, microstructure and protein behavioral changes affected by processing conditions[J]. LWT-Food Science and Technology,2018,96:140−146. doi: 10.1016/j.lwt.2018.05.020
    [17] WAN Y, LIU J, GUO S. Effects of succinylation on the structure and thermal aggregation of soy protein isolate[J]. Food Chemistry,2018,245:542−550. doi: 10.1016/j.foodchem.2017.10.137
    [18] HSIEH J F, YU C J, CHANG J Y, et al. Microbial transglutaminase-induced polymerization of beta-conglycinin and glycinin in soymilk: A proteomics approach[J]. Food Hydrocolloids,2014,35:678−685. doi: 10.1016/j.foodhyd.2013.08.020
    [19] NOGUEIRA S N F, CASANOVA F, GAUCHERON F, et al. Combined effect of transglutaminase and sodium citrate on the microstructure and rheological properties of acid milk gel[J]. Food Hydrocolloids,2018,82:304−311. doi: 10.1016/j.foodhyd.2018.03.038
    [20] DICKINSON E. Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization[J]. Trends in Food Science & Technology,1997,8(10):334−339.
    [21] 邓涵. 转谷氨酰胺酶交联协同热加工对豆腐品质特性和潜在致敏性的影响[D]. 南昌: 南昌大学, 2018.

    DENG H. Effect of cross-linking with transglutaminase and thermal processing on quality and potential allergenicity of tofu[D]. Nanchang: Nanchang University, 2018.
    [22] CHANYONGVORAKUL Y, MATSUMURA Y, SAKAMOTO H, et al. Gelation of bean 11S globulins by Ca2+-independent transglutaminase[J]. Bioscience, Biotechnology, and Biochemistry,1994,58(5):864−869. doi: 10.1271/bbb.58.864
    [23] LUO K, LIU S, MIAO S, et al. Effects of transglutaminase pre-crosslinking on salt-induced gelation of soy protein isolate emulsion[J]. Journal of Food Engineering,2019,263:280−287. doi: 10.1016/j.jfoodeng.2019.07.008
    [24] HESARINEJAD M A, KOOCHEKI A, RAZAVI S M A. Dynamic rheological properties of Lepidium perfoliatum seed gum: Effect of concentration, temperature and heating/cooling rate[J]. Food Hydrocolloids,2014,35:583−589. doi: 10.1016/j.foodhyd.2013.07.017
    [25] OZCAN Y T, LEE W J, HORNE D, et al. Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt[J]. Journal of Dairy Science,2007,90(4):1644−1652. doi: 10.3168/jds.2006-538
    [26] TSEVDOU M S, ELEFTHERIOU E G, TAOUKIS P S. Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt[J]. Innovative Food Science and Emerging Technologies,2013,17:144−152. doi: 10.1016/j.ifset.2012.11.004
    [27] MAO L, ROOS Y H, MIAO S. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11420−11428. doi: 10.1021/jf503931y
    [28] NAJI T S, RAZAVI S M A. New studies on basil (Ocimum bacilicum L.) seed gum: Part II-Emulsifying and foaming characterization[J]. Carbohydrate Polymers,2016,149:140−150. doi: 10.1016/j.carbpol.2016.04.088
    [29] RENZETTI S, DAL B F, ARENDT E K. Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase[J]. Journal of Cereal Science,2008,48(1):33−45. doi: 10.1016/j.jcs.2007.07.011
    [30] ERCILI C D, LILLE M, LEGLAND D, et al. Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase[J]. Food Hydrocolloids,2013,30(1):419−427. doi: 10.1016/j.foodhyd.2012.07.008
    [31] LIU Y, ZHANG Y, GUO Z, et al. Enhancing the functional characteristics of soy protein isolate via cross-linking catalyzed by Bacillus subtilis transglutaminase[J]. Journal of the Science of Food and Agriculture,2021,101(10):4154−4160. doi: 10.1002/jsfa.11052
    [32] LIU Y, HUANG L, ZHENG D, et al. Characterization of transglutaminase from Bacillus subtilis and its cross-linking function with a bovine serum albumin model[J]. Food and Function,2018,9(11):5560−5568. doi: 10.1039/C8FO01503A
    [33] DOMAGALA J, NAJGEBAUER L D, WIETESKA S I, et al. Influence of milk protein cross-linking by transglutaminase on the rennet coagulation time and the gel properties[J]. Journal of the Science of Food and Agriculture,2016,96(10):3500−3507. doi: 10.1002/jsfa.7534
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回