Progress in Optical and Electrochemical Sensors for Detection of Quinolone Antibiotics in Food
-
摘要: 食品中喹诺酮类抗生素的残留危害食品安全,已经引起广泛关注。基于纳米材料制备的传感器具有实时分析、低检测限和分析所需的样品量小等多种优势,是目前喹诺酮类抗生素的现场检测技术研究的热点。本文介绍了荧光、比色、表面增强拉曼散射(SERS)、免疫层析(ICA)等光学传感器和基于不同纳米材料的电化学传感器在喹诺酮类抗生素检测中的应用,比较和分析了不同类型传感器的特点。并对量子点、上转换纳米粒子等纳米材料在光学传感器中的应用,以及碳纳米材料、金属纳米材料和氧化还原介质等在电化学传感器中的应用进行了综述并提出了展望,以期为食品中抗生素的检测和传感器的发展提供新的思路。Abstract: Quinolone antibiotic residues present a high risk for food safety and have gained widespread attention. Nanomaterials based sensors have the advantages of on-site application, sensitivity, and small sample volume requirement and has attracted significant interest in on-site detection technology research for quinolone antibiotics. This paper introduces the application of optical sensors including fluorescence, colorimetry, SERS, ICA and electrochemical sensors based on diverse nanomaterials in quinolone antibiotics detection and summarizes the characteristics of diverse sensors. The application of nanomaterials including quantum dots and upconversion in optical sensors, as well as those of carbon and metal nanomaterials and redox media in electrochemical sensors are reviewed and evaluated. The objective of this work is to provide new concepts for antibiotics detection in food and the development of sensors.
-
Key words:
- quinolone antibiotics /
- optical /
- electrochemical /
- sensors /
- nanomaterials
-
图 5 基于免疫层析的光学传感器检测喹诺酮类抗生素的原理图
注:Negative:阴性;Positive:阳性;Sample pad:样品垫;PVC support plate:PVC板;T line:T线;C line:C线;NC membrane:硝酸纤维素膜;Absorbent pad:吸附垫;Gold particles:金属材料;Anti-QNs-mAb:抗喹诺酮类单克隆抗体;Target:靶标;Coating antigen:包被抗原;Coating anti-mouse IgG:二抗。
Figure 5. The schematic diagram of optical sensor based on immunochromatography for detecting quinolone antibiotics
表 1 近年来用于喹诺酮类抗生素检测的光学传感器的实例
Table 1. Examples of optical sensors used for quinolone antibiotics detection in recent years
检测方法 原理 靶标 LOD(ng/mL) 线性范围(ng/mL) 时间 样品 荧光 量子点电子转移导致荧光猝灭 LFO 1.53 730~7300 - 牛奶[23] 与GO结合导致CSUNP荧光猝灭 ENR 0.47 0.976~62.5 2 h 奶粉[26] 分析物和荧光免疫探针与抗体的竞争结合 NOR 0.01 0.01~10 15 min 牛奶,蜂蜜[27] 靶向FQs与AuNPs对单抗连接的UCPs的竞争反应 ENR;CIP;NOR 0.19~0.32 0~80 - 自来水[28] 适配体和上转换纳米粒子的杂交探针与靶标结合后的荧光猝灭 ENR 0.06 1~10 90 min 鲈鱼,蛇头鱼,
鲇鱼[29]对不同靶标的荧光颜色转换 OFL;CIP 0.693;0.802 - 80 min -[45] 比色 AuNPs在盐溶液中聚集 OFL 1.221 7.23~144.55 70 min 自来水[30] 互补DNA链与CIP对适配体的竞争结合 CIP 0.397 1.325~165.67 1 h 牛奶[31] 抗体捕获,比色和光热分析 NOR 0.045 0.05~100 20 min 自来水[33] SERS 分析物和抗原与标记的AuNPs间的竞争 NOR、CIP等 0.00055 0.0001~1 15 min 牛奶[37] 微结构光流控器检测未标记的抗生素拉曼信号 CIP;NOR 0.033;0.003 - - 自来水[46] Au@Ag提供的电磁场对拉曼信号的放大 LEVO 0.00037 0.361~36100 - -[47] ICA 抗原与分析物的竞争策略 CIP,OFL等 0.1~10 1~100 10 min 牛奶[41] 抗体标记的AuNPs对抗生素的特异性识别 OFL 0.16 3.125~100 12 min 牛肉[42] 基于QDM的免疫层析 CIP 0.05 0.1~100 15 min 鱼肉[43] AuNPs,QDs,UCNPs分别标记NOR单克隆抗体 NOR 2.0;2.0;0.5 - 10 min 牛奶[44] 注:表中“-”表示所引文献未提及该内容;表2同。 表 2 喹诺酮类抗生素检测的电化学传感器
Table 2. Electrochemical sensors for the detection of quinolone antibiotics
检测方法 原理 靶标 LOD(ng/mL) 线性范围(ng/mL) 时间 样品 EIS 固定于纳米复合基质的适配体对抗生素的特异识别 CIP 0.5 0.5~64 10 min 牛奶[50] SWV OCNTs-PDA-Ag修饰玻碳电极 CIP 1.656 1.656~3313 - 自来水[51] DPV Ni-MOF&AuNPs负载适配体与靶标结合 ENR 5.6×10−6 10-5~1 - -[53] DPV AuNPs,AC修饰玻碳电极 CIP 0.066 0.166~8.284 7 min 牛奶[54] DPV 适配体与OFL结合产生信号变化 OFL 0.361 18.05~7220 - 自来水[55] DPV 特定结合物与游离ENR在固定化抗体上的竞争性结合 ENR 3 5~10 6 min 猪、鸡、牛、羊、鸭[56] DPV 双标记适配体修饰电极 CIP 0.033 99.39~149.09 60 min 牛奶[57] SWV 铋膜电极 CIP 0.003 0.008~0.2 62 s 自来水[59] -
[1] BISACCHI G S. Origins of the quinolone class of antibacterials: An expanded "discovery story"[J]. Journal of Medicinal Chemistry,2015,58(12):4874−4882. doi: 10.1021/jm501881c [2] ANDERSSON M I, MACGOWAN A P. Development of the quinolones[J]. Journal of Antimicrobial Chemotherapy,2003,51(suppl_1):1−11. [3] TANG H Z, WANG Y H, LI S, et al. Graphene oxide composites for magnetic solid-phase extraction of twelve quinolones in water samples followed by MALDI-TOF MS[J]. Analytical and Bioanalytical Chemistry,2019,411(26):7039−7049. doi: 10.1007/s00216-019-02081-w [4] 卢金连, 杜明慧, 潘运安, 等. 有机蔬菜中喹诺酮类抗生素污染特征与风险评价[J]. 环境科学与技术,2021,44(3):209−217. [LU Jinlian, DU Minghui, PAN Yunan, et al. Pollution characteristics and risk assessment of quinolone antibiotics in organic vegetables[J]. Environmental Science and Technology,2021,44(3):209−217. doi: 10.19672/j.cnki.1003-6504.2021.03.027 [5] 林功师. 市售鱼类喹诺酮类药物残留调查[J]. 水产养殖,2022,43(5):32−35. [LING Gongshi. Survey of quinolones residues in fishes in the retailer[J]. Journal of Aquaculture,2022,43(5):32−35. doi: 10.3969/j.issn.1004-2091.2022.05.008 [6] BARBOSA TORRALBO J, BARRÓN BUENO D, HERMO OUTEIRAL M, et al. Determination and characterization of quinolones in foodstuffs of animal origin by CE-UV, LC-UV, LC-Fl, LC-MS and LC-MS/MS[J]. Ovidius University Annals of Chemistry,2009,20(2):165−179. [7] SAMANIDOU V, DEMETRIOU C, PAPADOYANNIS I. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC[J]. Analytical and Bioanalytical Chemistry,2003,375(5):623−629. doi: 10.1007/s00216-003-1749-9 [8] JIANG W, WANG Z, BEIER R C, et al. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay[J]. Analytical Chemistry,2013,85(4):1995−1999. doi: 10.1021/ac303606h [9] HAN R W, ZHENG N, WANG J Q, et al. Survey of tetracyclines, sulfonamides, sulfamethazine, and quinolones in UHT milk in china market[J]. Journal of Integrative Agriculture,2013,12(7):1300−1305. doi: 10.1016/S2095-3119(13)60433-5 [10] JINQING J, HAITANG Z, JUNWEI L, et al. Development and optimization of an indirect competitive ELISA for detection of norfloxacin residue in chicken liver[J]. Procedia Environmental Sciences,2011,8:128−133. doi: 10.1016/j.proenv.2011.10.021 [11] HERRERA-HERRERA A V, HERNáNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis,2010,31(20):3457−3465. doi: 10.1002/elps.201000285 [12] WANG Y, BAEYENS W R G, HUANG C, et al. Enhanced separation of seven quinolones by capillary electrophoresis with silica nanoparticles as additive[J]. Talanta,2009,77(5):1667−1674. doi: 10.1016/j.talanta.2008.10.002 [13] MORENO-GONZÁLEZ D, LARA F J, GÁMIZ-GRACIA L, et al. Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples[J]. Journal of Chromatography A,2014,1360:1−8. doi: 10.1016/j.chroma.2014.07.049 [14] DAWADI S, THAPA R, MODI B, et al. Technological advancements for the detection of antibiotics in food products[J]. Processes,2021,9(9):1500. doi: 10.3390/pr9091500 [15] MAJDINASAB M, YAQUB M, RAHIM A, et al. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food[J]. Sensors (Basel),2017,17(9):1947. doi: 10.3390/s17091947 [16] MADURAIVEERAN G, JIN W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications[J]. Trends in Environmental Analytical Chemistry,2017,13:10−23. doi: 10.1016/j.teac.2017.02.001 [17] MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends Biotechnol,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004 [18] HOLZINGER M, LE GOFF A, COSNIER S. Synergetic effects of combined nanomaterials for biosensing applications[J]. Sensors (Basel),2017,17(5):1010. doi: 10.3390/s17051010 [19] ZHANG R, BELWAL T, LI L, et al. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1465−1487. doi: 10.1111/1541-4337.12576 [20] SADEGHI A S, ANSARI N, RAMEZANI M, et al. Optical and electrochemical aptasensors for the detection of amphenicols[J]. Biosens Bioelectron,2018,118:137−152. doi: 10.1016/j.bios.2018.07.045 [21] RENUKA R M, MAROLI N, ACHUTH J, et al. Highly adaptable and sensitive FRET-based aptamer assay for the detection of Salmonella paratyphi A[J]. Spectrochim Acta Part A:Molecular and Biomolecular Spectroscopy,2020,243:118662. doi: 10.1016/j.saa.2020.118662 [22] XIA H, PENG M, LI N, et al. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection[J]. Chemical Physics Letters,2020,740:137085. doi: 10.1016/j.cplett.2019.137085 [23] TAN X, LI Q, YANG J. A simple fluorescence method detection levofloxacin in milk based on GSH-CdTe QDs[J]. Journal of Molecular Structure,2020,1201:127175. doi: 10.1016/j.molstruc.2019.127175 [24] SUANCHAN K, CHANSUD N, SA-NGUANPRANG S, et al. A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:127376. doi: 10.1016/j.colsurfa.2021.127376 [25] RONG Y, HASSAN M M, OUYANG Q, et al. Lanthanide ion (Ln(3+))-based upconversion sensor for quantification of food contaminants: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3531−3578. doi: 10.1111/1541-4337.12765 [26] ZHANG Y, DUAN B, BAO Q, et al. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics[J]. Journal of Materials Chemistry B,2020,8(37):8607−8613. doi: 10.1039/D0TB01441A [27] HU G, SHENG W, ZHANG Y, et al. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels[J]. Analytical and Bioanalytical Chemistry,2015,407(28):8487−8496. doi: 10.1007/s00216-015-8996-4 [28] ZHANG Z, ZHANG M, WU X Y, et al. Upconversion fluorescence resonance energy transfer-A novel approach for sensitive detection of fluoroquinolones in water samples[J]. Microchemical Journal,2016,124:181−187. doi: 10.1016/j.microc.2015.08.024 [29] LIU X, SU L, ZHU L, et al. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes[J]. Sensors and Actuators B:Chemical,2016,233:394−401. doi: 10.1016/j.snb.2016.04.096 [30] ZHOU X, WANG L, SHEN G, et al. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles[J]. Mikrochim Acta,2018,185(7):355. doi: 10.1007/s00604-018-2895-2 [31] LAVAEE P, DANESH N M, RAMEZANI M, et al. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles[J]. Microchimica Acta,2017,184(7):2039−2045. doi: 10.1007/s00604-017-2213-4 [32] SUN M, HE M, JIANG S, et al. Multi-enzyme activity of three layers FeOx@ZnMnFeOy@Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone[J]. Chemical Engineering Journal,2021,425:131823. doi: 10.1016/j.cej.2021.131823 [33] REN S, LI Q, WANG J, et al. Development of a fast and ultrasensitive black phosphorus-based colorimetric/photothermal dual-readout immunochromatography for determination of norfloxacin in tap water and river water[J]. Journal of Hazardous Materials,2021,402:123781. doi: 10.1016/j.jhazmat.2020.123781 [34] REZENDE J D P, PACHECO A F C, MAGALHÃES O F, et al. Polydiacetylene/triblock copolymer/surfactant nanoblend: A simple and rapid method for the colorimetric screening of enrofloxacin residue[J]. Food Chemistry,2019,280:1−7. doi: 10.1016/j.foodchem.2018.12.033 [35] SHARMA B, FRONTIERA R R, HENRY A I, et al. SERS: Materials, applications, and the future[J]. Materials Today,2012,15(1−2):16−25. doi: 10.1016/S1369-7021(12)70017-2 [36] LIANG J F, PENG C, LI P, et al. A review of detection of antibiotic residues in food by surface-enhanced Raman spectroscopy[J]. Bioinorg Chemistry and Applications,2021,2021:8180154. [37] SHI Q, HUANG J, SUN Y, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta,2018,185(2):84. doi: 10.1007/s00604-017-2556-x [38] LIU J, LIU W, ZHOU S N, et al. Free-standing membrane liquid-state platform for SERS-based determination of norfloxacin in environmental samples[J]. Journal of Analysis and Testing,2021,5(3):217−224. doi: 10.1007/s41664-021-00192-x [39] LI N, HAN S, LIN S, et al. Fabrication of an AAO-based surface-enhanced Raman scattering substrate for the identification of levofloxacin in milk[J]. New Journal of Chemistry,2021,45(17):7571−7577. doi: 10.1039/D1NJ00642H [40] HAIPING L, JIANGYUE W, FANPING M, et al. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review[J]. Food Control,2021,130:108356. doi: 10.1016/j.foodcont.2021.108356 [41] PENG J, LIU L, XU L, et al. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro) quinolones by one monoclonal antibody[J]. Nano Research,2017,10(1):108−120. doi: 10.1007/s12274-016-1270-z [42] OLIVEIRA C P D, SOARES N D F F, TEIXEIRA A V N D C, et al. Gold nanoparticle-based paper sensor for highly specific detection of ofloxacin in beef[J]. Journal of Food Chemistry & Nanotechnology,2019,05(04):72−78. [43] LIU J, WANG B, HUANG H, et al. Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips[J]. Food Chemistry,2021,335:127596. doi: 10.1016/j.foodchem.2020.127596 [44] HU G, GAO S, HAN X, et al. Comparison of immunochromatographic strips using colloidal gold, quantum dots, and upconversion nanoparticles for visual detection of norfloxacin in milk samples[J]. Food Analytical Methods,2020,13(5):1069−1077. doi: 10.1007/s12161-020-01725-3 [45] XIAO J, LIU M, TIAN F, et al. Stable europium-based metal-organic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorganic Chemistry,2021,60(7):5282−5289. doi: 10.1021/acs.inorgchem.1c00263 [46] TENG P, GAO D, YANG X, et al. In situ SERS detection of quinolone antibiotic residues in a water environment based on optofluidic in-fiber integrated Ag nanoparticles[J]. Applied Optics,2021,60(22):6659−6664. doi: 10.1364/AO.426611 [47] TIAN Y, LI G, ZHANG H, et al. Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules[J]. Optics Express,2018,26(18):23347−23358. doi: 10.1364/OE.26.023347 [48] NGUYEN L D, HUYNH T M, NGUYEN T S V, et al. Nafion/platinum modified electrode-on-chip for the electrochemical detection of trace iron in natural water[J]. Journal of Electroanalytical Chemistry,2020,873:114396. doi: 10.1016/j.jelechem.2020.114396 [49] WANG Q, XUE Q, CHEN T, et al. Recent advances in electrochemical sensors for antibiotics and their applications[J]. Chinese Chemical Letters,2021,32(2):609−619. doi: 10.1016/j.cclet.2020.10.025 [50] HU X, GOUD K Y, KUMAR V S, et al. Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin[J]. Sensors and Actuators B:Chemical,2018,268(1):278−286. [51] SINGH V, KUSS S. Pico-molar electrochemical detection of ciprofloxacin at composite electrodes[J]. Analyst,2022,147(16):3773−3782. doi: 10.1039/D2AN00645F [52] SADAT KHALOO S, MOZAFFARI S, BAREKAT A, et al. Fabrication of a modified electrode based on multi-walled carbon nanotubes decorated with iron oxide nanoparticles for the determination of enrofloxacin[J]. Micro & Nano Letters,2015,10(10):561−566. [53] LÜ L, ZHANG B, TIAN P, et al. A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection enrofloxacin[J]. Journal of Electroanalytical Chemistry,2022,911:116251. doi: 10.1016/j.jelechem.2022.116251 [54] GISSAWONG N, SRIJARANAI S, BOONCHIANGMA S, et al. An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent[J]. Microchimica Acta,2021,188(6):208. doi: 10.1007/s00604-021-04869-z [55] PILEHVAR S, REINEMANN C, BOTTARI F, et al. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin[J]. Sensors and Actuators B:Chemical,2017,240:1024−1035. doi: 10.1016/j.snb.2016.09.075 [56] AYMARD C, KANSO H, SERRANO M J, et al. Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples[J]. Food Chemistry,2022,370:131016. doi: 10.1016/j.foodchem.2021.131016 [57] TAGHDISI HEIDARIAN S M, TAVANAEE SANI A, DANESH N M, et al. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat[J]. Sensors and Actuators B:Chemical,2021,334:129632. doi: 10.1016/j.snb.2021.129632 [58] DE SOUZA C C, ALVES G F, LISBOA T P, et al. Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples[J]. Journal of Food Composition and Analysis,2022,112:104700. doi: 10.1016/j.jfca.2022.104700 [59] KERGARAVAT S V, ROMERO N, REGALDO L, et al. Simultaneous electrochemical detection of ciprofloxacin and Ag(I) in a silver nanoparticle dissolution: Application to ecotoxicological acute studies[J]. Microchemical Journal,2021,162:105832. doi: 10.1016/j.microc.2020.105832