留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同成膜温度对高粱秸秆粉/纳米ZnO/聚乙烯醇纳米复合膜理化性能和微观结构的影响

张关涛 张东杰 李娟 王洪江 金露达 衣然 张子桐 张悦

张关涛,张东杰,李娟,等. 不同成膜温度对高粱秸秆粉/纳米ZnO/聚乙烯醇纳米复合膜理化性能和微观结构的影响[J]. 食品工业科技,2023,44(9):127−134. doi: 10.13386/j.issn1002-0306.2022070290
引用本文: 张关涛,张东杰,李娟,等. 不同成膜温度对高粱秸秆粉/纳米ZnO/聚乙烯醇纳米复合膜理化性能和微观结构的影响[J]. 食品工业科技,2023,44(9):127−134. doi: 10.13386/j.issn1002-0306.2022070290
ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Effect of Different Film-forming Temperature on Physicochemical Properties and Microstructure of Sorghum Straw Powder/Nano-ZnO/Polyvinyl Alcohol Nanocomposite Film[J]. Science and Technology of Food Industry, 2023, 44(9): 127−134. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070290
Citation: ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Effect of Different Film-forming Temperature on Physicochemical Properties and Microstructure of Sorghum Straw Powder/Nano-ZnO/Polyvinyl Alcohol Nanocomposite Film[J]. Science and Technology of Food Industry, 2023, 44(9): 127−134. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070290

不同成膜温度对高粱秸秆粉/纳米ZnO/聚乙烯醇纳米复合膜理化性能和微观结构的影响

doi: 10.13386/j.issn1002-0306.2022070290
基金项目: 国家重点研发计划项目(2018YFE0206300-08,2018YFE0206300-13);黑龙江省高等教育教学改革研究项目(SJGY20200499);黑龙江八一农垦大学“三纵”基础培育(自然)项目(ZRCPY202213);黑龙江八一农垦大学研究生创新科研项目(YJSCX2021-Y81)。
详细信息
    作者简介:

    张关涛(1995−),男,硕士研究生,研究方向:食品科学与工程,E-mail: ZGT_667788@163.com

    通讯作者:

    张东杰(1966−),男,博士,教授,研究方向:农产品加工与质量安全,E-mail:byndzdj@126.com

    李娟(1980−),女,硕士,副教授,研究方向:食品包装材料,E-mail:83038148@qq.com

  • 中图分类号: TS206.4

Effect of Different Film-forming Temperature on Physicochemical Properties and Microstructure of Sorghum Straw Powder/Nano-ZnO/Polyvinyl Alcohol Nanocomposite Film

  • 摘要: 为提高农林废弃物的利用率及促进新型生物质材料的产业化生产,本文以高粱秸秆粉(Sorghum straw powder,SSP)、纳米ZnO、聚乙烯醇(Polyvinyl alcohol,PVA)等为主要成膜基材,采用共混流延法制备出高粱秸秆粉/纳米ZnO/聚乙烯醇(SSP/Nano-ZnO/PVA,SNP)纳米复合膜,研究SSP的加入及不同成膜温度(75、80、85、90、95 ℃)对SNP纳米复合膜厚度、抗拉强度(Tensile strength,TS)、阻隔性能、微观结构、光谱特性和热性能的影响。结果表明:SSP的加入能提高SNP纳米复合膜TS、阻隔性能及热性能;随着成膜温度的升高,SNP纳米复合膜TS和阻隔性能先变好后变差,当成膜为85 ℃时,SNP纳米复合膜性能最好(TS=31.22 MPa最大,水蒸气透过系数=1.32×10−12 g/(cm·s·Pa)、水溶性=36.41%、溶胀度=238.41%最小),并通过SEM、AFM、FT-IR、TG分析表明该温度下SNP纳米复合膜表面光滑,截面致密,各基质间具有良好的相容性且热稳定性较好,综合性能优于其他成膜温度下的纳米复合膜。

     

  • 图  复合膜的制备工艺流程图

    Figure  1.  The flow chart of the preparation process of the composite film

    图  NP膜和不同成膜温度制备的SNP膜的厚度

    注:不同字母表示显著性差异(P<0.05),图3~图5同。

    Figure  2.  Thickness of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜的TS

    Figure  3.  TS of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜的WVP

    Figure  4.  WVP of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜水溶性和溶胀度测定后样品图(a)和数据图(b)

    注:a:左图为水溶性测定后样品图,右图为溶胀度测定后样品图。

    Figure  5.  Sample image (a) and data image (b) after determination of water solubility and swelling degree of NP film and SNP film prepared at different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜表面(a)和截面(b)的SEM图

    Figure  6.  SEM images of the surface (a) and cross-section (b) of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜原子力显微镜形貌

    Figure  7.  AFM morphologies of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜的FT-IR图

    Figure  8.  FT-IR images of NP films and SNP films prepared with different film-forming temperatures

    图  NP膜和不同成膜温度制备的SNP膜的TG(a)和DTG(b)图

    Figure  9.  TG (a) and DTG (b) of NP films and SNP films prepared with different film-forming temperatures

    表  1  NP膜和不同成膜温度制备的SNP膜粗糙度参数

    Table  1.   Roughness parameters of NP films and SNP films prepared with different film-forming temperatures

    膜样品粗糙度参数
    Ra(nm)Rq(nm)
    NP1621.32
    75 ℃ SNP54.167.79
    80 ℃ SNP27.1435.8
    85 ℃ SNP19.4426.91
    90 ℃ SNP51.7160.74
    95 ℃ SNP51.7862.82
    下载: 导出CSV
  • [1] WU M, GONG L, MA C, et al. Enhanced enzymatic saccharification of Sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking[J]. Bioresource Technology,2021,340:125695. doi: 10.1016/j.biortech.2021.125695
    [2] DU W, JIANG T, SHI M, et al. Structure and properties of starch/poly (vinyl alcohol) film modificated by different inorganic salts[J]. Chemistry Select,2019,4(2):600−607.
    [3] CHEN S, XIA Y, ZHANG B, et al. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances[J]. Journal of Hazardous Materials,2021,408:124956. doi: 10.1016/j.jhazmat.2020.124956
    [4] MAHMOUD K H. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2016,157:153−157. doi: 10.1016/j.saa.2015.12.029
    [5] KHAN M N, REHMAN N, SHARIF A, et al. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication[J]. International Journal of Biological Macromolecules,2020,153:72−78. doi: 10.1016/j.ijbiomac.2020.02.333
    [6] 张关涛, 张东杰, 李娟, 等. 纳米纤维素的制备及其在食品包装材料中应用的研究进展[J]. 食品工业科技,2022,43(3):430−437. [ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Research progress on the preparation of nanocellulose and its application in food packaging materials[J]. Food Industry Science and Technology,2022,43(3):430−437.
    [7] OUNKAEW A, KASEMSIRI P, KAMWILAISAK K, et al. Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid[J]. Journal of Polymers and the Environment,2018,26(9):3762−3772. doi: 10.1007/s10924-018-1254-z
    [8] ZANELA J, CASAGRANDE M, REIS M O, et al. Biodegradable sheets of starch/polyvinyl alcohol (PVA): Effects of PVA molecular weight and hydrolysis degree[J]. Waste and Biomass Valorization,2019,10(2):319−326. doi: 10.1007/s12649-017-0051-6
    [9] CHAUDHURI B, GHOSH S, MONDAL B, et al. Preparation and characterization of carbon fibre powder (CFP)-polyvinyl alcohol (PVA) composite films showing percolation threshold behaviour[J]. Materials Science and Engineering:B,2022,275:115500. doi: 10.1016/j.mseb.2021.115500
    [10] PANG A L, ARSAD A, AHMADIPOUR M, et al. Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites[J]. BioResources,2020,15(4):8648. doi: 10.15376/biores.15.4.8648-8661
    [11] JAYARAMUDU T, VARAPRASAD K, PYARASANI R D, et al. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application[J]. Carbohydrate Polymers,2021,254:117302. doi: 10.1016/j.carbpol.2020.117302
    [12] WANG L, MU R J, LI Y, et al. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films[J]. LWT,2019,113:108293. doi: 10.1016/j.lwt.2019.108293
    [13] DELORME A E, RADUSIN T, MYLLYTIE P, et al. Enhancement of gas barrier properties and durability of poly (butylene succinate-co-butylene adipate)-based nanocomposites for food packaging applications[J]. Nanomaterials,2022,12(6):978. doi: 10.3390/nano12060978
    [14] ZHU R, YU Q, LI M, et al. Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review[J]. Journal of Environmental Chemical Engineering,2021,9(5):105905. doi: 10.1016/j.jece.2021.105905
    [15] BAKARE I O, OKIEIMEN F E, PAVITHRAN C, et al. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites[J]. Materials & Design,2010,31(9):4274−4280.
    [16] ZHONG Y, SONG X, LI Y. Antimicrobial, physical and mechanical properties of kudzu starch-chitosan composite films as a function of acid solvent types[J]. Carbohydrate Polymers,2011,84(1):335−342. doi: 10.1016/j.carbpol.2010.11.041
    [17] ORTEGA-TORO R, MUÑOZ A, TALENS P, et al. Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol[J]. Food Hydrocolloids,2016,56:9−19. doi: 10.1016/j.foodhyd.2015.11.029
    [18] 中国国家标准化管理委员会. GB/T 6672-2001塑料薄膜和薄片厚度测定: 机械测量法[S]. 北京: 中国标准出版社, 2001.

    Standardization Administration of China. GB/T 6672-2001 Determination of thickness of plastic film and sheet: Mechanical measurement method[S]. Beijing: China Standard Press, 2001.
    [19] 中国国家标准化管理委员会. GB/T 1040.3-2006薄塑和薄片的拉伸性能测试标准方法[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of China. GB/T 1040.3-2006 Standard method for tensile properties of thin plastics and sheets[S]. Beijing: China Standard Press, 2006.
    [20] 中国国家标准化管理委员会. GB 1037-1988塑料薄膜和片材透水蒸气性试验方法: 杯式法[S]. 北京: 中国标准出版社, 1988.

    Standardization Administration of China. GB 1037-1988 Test method for water vapor permeability of plastic films and sheets: Cup method[S]. Beijing: China Standard Press, 1988.
    [21] 中国国家标准化管理委员会. GB/T 16928-1997包装材料试验方法透湿率[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of China. GB/T 16928-1997 Test method for moisture permeability of packaging materials[S]. Beijing: China Standard Press, 1997.
    [22] XIANG F, XIA Y, WANG Y, et al. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation[J]. Food Packaging and Shelf Life,2021,29:100701. doi: 10.1016/j.fpsl.2021.100701
    [23] 向飞, 王岩, 夏玉婷, 等. 干燥温度对魔芋葡甘聚糖/纳米玉米醇溶蛋白复合膜微观结构和理化性能的影响[J]. 食品工业科技,2022,43(6):243−249. [XIANG Fei, WANG Yan, XIA Yuting, et al. Effects of drying temperature on the microstructure and physicochemical properties of konjac glucomannan/nano-zein composite films[J]. Food Industry Science and Technology,2022,43(6):243−249.
    [24] BACHVAROVA-NEDELCHEVA A, IORDANOVA R, KOSTOV K L, et al. Sol-gel powder synthesis in the TiO2-TeO2-ZnO system: Structural characterization and properties[J]. Arabian Journal of Chemistry,2020,13(9):7132−7146. doi: 10.1016/j.arabjc.2020.07.018
    [25] WANG K, WU K, XIAO M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules,2017,105:1096−1104. doi: 10.1016/j.ijbiomac.2017.07.127
    [26] LI C, XIANG F, WU K, et al. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying[J]. Carbohydrate Polymers,2020,250:116840. doi: 10.1016/j.carbpol.2020.116840
    [27] PAPADAKI A, MANIKAS A C, PAPAZOGLOU E, et al. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach[J]. Food Chemistry,2022,385:132604. doi: 10.1016/j.foodchem.2022.132604
    [28] XIE K, TU H, DOU Z, et al. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system[J]. Polymer,2021,215:123379. doi: 10.1016/j.polymer.2021.123379
    [29] THUY V T T, HAO L T, JEON H, et al. Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging[J]. Green Chemistry,2021,23(7):2658−2667. doi: 10.1039/D0GC03647A
    [30] LI C, WU K, SU Y, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macromolecules,2019,138:135−143. doi: 10.1016/j.ijbiomac.2019.07.007
    [31] ZHOU N, WANG L, YOU P, et al. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract[J]. International Journal of Biological Macromolecules,2021,172:515−523. doi: 10.1016/j.ijbiomac.2021.01.047
    [32] OLIVEIRA T G, MAKISHI G L A, CHAMBI H N M, et al. Cellulose fiber reinforced biodegradable films based on proteins extracted from castor bean (Ricinus communis L.) cake[J]. Industrial Crops and Products,2015,67:355−363. doi: 10.1016/j.indcrop.2015.01.036
    [33] BEDANE A H, EIĆ M, FARMAHINI-FARAHANI M, et al. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films[J]. Journal of Membrane Science,2015,493:46−57. doi: 10.1016/j.memsci.2015.06.009
    [34] BISHAY I K, ABD-EL-MESSIEH S L, MANSOUR S H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J]. Materials & Design,2011,32(1):62−68.
    [35] ROMANI V P, PRENTICE-HERNANDEZ C, MARTINS V G. Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging[J]. Industrial Crops and Products,2017,97:268−274. doi: 10.1016/j.indcrop.2016.12.026
    [36] HASAN M, GOPAKUMAR D A, OLAIYA N G, et al. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films[J]. International Journal of Biological Macromolecules,2020,156:896−905. doi: 10.1016/j.ijbiomac.2020.04.039
    [37] ESTRADA-MONJE A, ALONSO-ROMERO S, ZITZUMBO-GUZMÁN R, et al. Thermoplastic starch-based blends with improved thermal and thermomechanical properties[J]. Polymers,2021,13(23):4263. doi: 10.3390/polym13234263
    [38] ESPINO E, CAKIR M, DOMENEK S, et al. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley[J]. Industrial Crops and Products,2014,62:552−559. doi: 10.1016/j.indcrop.2014.09.017
    [39] WU C, PENG S, WEN C, et al. Structural characterization and properties of konjac glucomannan/curdlan blend films[J]. Carbohydrate Polymers,2012,89(2):497−503. doi: 10.1016/j.carbpol.2012.03.034
    [40] JIANG S, LIU C, WANG X, et al. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles[J]. LWT-Food Science and Technology,2016,69:251−257. doi: 10.1016/j.lwt.2016.01.053
    [41] RAHMAN M M, NETRAVALI A N, TIIMOB B J, et al. Bioderived “green” composite from soy protein and eggshell nanopowder[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2329−2337.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回