Effect of Different Film-forming Temperature on Physicochemical Properties and Microstructure of Sorghum Straw Powder/Nano-ZnO/Polyvinyl Alcohol Nanocomposite Film
-
摘要: 为提高农林废弃物的利用率及促进新型生物质材料的产业化生产,本文以高粱秸秆粉(Sorghum straw powder,SSP)、纳米ZnO、聚乙烯醇(Polyvinyl alcohol,PVA)等为主要成膜基材,采用共混流延法制备出高粱秸秆粉/纳米ZnO/聚乙烯醇(SSP/Nano-ZnO/PVA,SNP)纳米复合膜,研究SSP的加入及不同成膜温度(75、80、85、90、95 ℃)对SNP纳米复合膜厚度、抗拉强度(Tensile strength,TS)、阻隔性能、微观结构、光谱特性和热性能的影响。结果表明:SSP的加入能提高SNP纳米复合膜TS、阻隔性能及热性能;随着成膜温度的升高,SNP纳米复合膜TS和阻隔性能先变好后变差,当成膜为85 ℃时,SNP纳米复合膜性能最好(TS=31.22 MPa最大,水蒸气透过系数=1.32×10−12 g/(cm·s·Pa)、水溶性=36.41%、溶胀度=238.41%最小),并通过SEM、AFM、FT-IR、TG分析表明该温度下SNP纳米复合膜表面光滑,截面致密,各基质间具有良好的相容性且热稳定性较好,综合性能优于其他成膜温度下的纳米复合膜。Abstract: In order to improve the utilization of agricultural and forestry waste and promote the industrial production of new biomass materials, sorghum straw powder (SSP), nano-ZnO, polyvinyl alcohol (PVA) were used as the main film matrix and sorghum straw powder/nano-ZnO/polyvinyl alcohol (SSP/Nano-ZnO/PVA, SNP) nanocomposite films were prepared by blending casting method in this research. The effects of SSP addition and different film-forming temperatures (75, 80, 85, 90, 95 ℃) on the thickness, tensile strength (TS), barrier properties, microstructure, spectral properties and thermal properties of SNP nanocomposite films were investigated. The results showed that the addition of SSP could improve the TS, barrier properties and thermal properties of the SNP nanocomposite films. With the increase of the film-forming temperature, the TS and barrier properties of the SNP nanocomposite films increased first and decreased later. When the film forming temperature was 85 ℃, SNP nanocomposite film exhibited the best comprehensive performance with maximum TS (31.22 MPa) and minimum water vapor transmission coefficient (1.32×10−12 g/(cm·s·Pa)), water soluble (36.41%) and swelling degree (238.41%). The SEM, AFM, FT-IR and TG analyses showed that the SNP nanocomposite film had a smooth surface, dense cross-section, good compatibility between the substrates and good thermal stability, and overall performance (better than other film-forming temperatures of nanocomposite films).
-
表 1 NP膜和不同成膜温度制备的SNP膜粗糙度参数
Table 1. Roughness parameters of NP films and SNP films prepared with different film-forming temperatures
膜样品 粗糙度参数 Ra(nm) Rq(nm) NP 16 21.32 75 ℃ SNP 54.1 67.79 80 ℃ SNP 27.14 35.8 85 ℃ SNP 19.44 26.91 90 ℃ SNP 51.71 60.74 95 ℃ SNP 51.78 62.82 -
[1] WU M, GONG L, MA C, et al. Enhanced enzymatic saccharification of Sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking[J]. Bioresource Technology,2021,340:125695. doi: 10.1016/j.biortech.2021.125695 [2] DU W, JIANG T, SHI M, et al. Structure and properties of starch/poly (vinyl alcohol) film modificated by different inorganic salts[J]. Chemistry Select,2019,4(2):600−607. [3] CHEN S, XIA Y, ZHANG B, et al. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances[J]. Journal of Hazardous Materials,2021,408:124956. doi: 10.1016/j.jhazmat.2020.124956 [4] MAHMOUD K H. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2016,157:153−157. doi: 10.1016/j.saa.2015.12.029 [5] KHAN M N, REHMAN N, SHARIF A, et al. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication[J]. International Journal of Biological Macromolecules,2020,153:72−78. doi: 10.1016/j.ijbiomac.2020.02.333 [6] 张关涛, 张东杰, 李娟, 等. 纳米纤维素的制备及其在食品包装材料中应用的研究进展[J]. 食品工业科技,2022,43(3):430−437. [ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Research progress on the preparation of nanocellulose and its application in food packaging materials[J]. Food Industry Science and Technology,2022,43(3):430−437. [7] OUNKAEW A, KASEMSIRI P, KAMWILAISAK K, et al. Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid[J]. Journal of Polymers and the Environment,2018,26(9):3762−3772. doi: 10.1007/s10924-018-1254-z [8] ZANELA J, CASAGRANDE M, REIS M O, et al. Biodegradable sheets of starch/polyvinyl alcohol (PVA): Effects of PVA molecular weight and hydrolysis degree[J]. Waste and Biomass Valorization,2019,10(2):319−326. doi: 10.1007/s12649-017-0051-6 [9] CHAUDHURI B, GHOSH S, MONDAL B, et al. Preparation and characterization of carbon fibre powder (CFP)-polyvinyl alcohol (PVA) composite films showing percolation threshold behaviour[J]. Materials Science and Engineering:B,2022,275:115500. doi: 10.1016/j.mseb.2021.115500 [10] PANG A L, ARSAD A, AHMADIPOUR M, et al. Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites[J]. BioResources,2020,15(4):8648. doi: 10.15376/biores.15.4.8648-8661 [11] JAYARAMUDU T, VARAPRASAD K, PYARASANI R D, et al. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application[J]. Carbohydrate Polymers,2021,254:117302. doi: 10.1016/j.carbpol.2020.117302 [12] WANG L, MU R J, LI Y, et al. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films[J]. LWT,2019,113:108293. doi: 10.1016/j.lwt.2019.108293 [13] DELORME A E, RADUSIN T, MYLLYTIE P, et al. Enhancement of gas barrier properties and durability of poly (butylene succinate-co-butylene adipate)-based nanocomposites for food packaging applications[J]. Nanomaterials,2022,12(6):978. doi: 10.3390/nano12060978 [14] ZHU R, YU Q, LI M, et al. Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review[J]. Journal of Environmental Chemical Engineering,2021,9(5):105905. doi: 10.1016/j.jece.2021.105905 [15] BAKARE I O, OKIEIMEN F E, PAVITHRAN C, et al. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites[J]. Materials & Design,2010,31(9):4274−4280. [16] ZHONG Y, SONG X, LI Y. Antimicrobial, physical and mechanical properties of kudzu starch-chitosan composite films as a function of acid solvent types[J]. Carbohydrate Polymers,2011,84(1):335−342. doi: 10.1016/j.carbpol.2010.11.041 [17] ORTEGA-TORO R, MUÑOZ A, TALENS P, et al. Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol[J]. Food Hydrocolloids,2016,56:9−19. doi: 10.1016/j.foodhyd.2015.11.029 [18] 中国国家标准化管理委员会. GB/T 6672-2001塑料薄膜和薄片厚度测定: 机械测量法[S]. 北京: 中国标准出版社, 2001.Standardization Administration of China. GB/T 6672-2001 Determination of thickness of plastic film and sheet: Mechanical measurement method[S]. Beijing: China Standard Press, 2001. [19] 中国国家标准化管理委员会. GB/T 1040.3-2006薄塑和薄片的拉伸性能测试标准方法[S]. 北京: 中国标准出版社, 2006.Standardization Administration of China. GB/T 1040.3-2006 Standard method for tensile properties of thin plastics and sheets[S]. Beijing: China Standard Press, 2006. [20] 中国国家标准化管理委员会. GB 1037-1988塑料薄膜和片材透水蒸气性试验方法: 杯式法[S]. 北京: 中国标准出版社, 1988.Standardization Administration of China. GB 1037-1988 Test method for water vapor permeability of plastic films and sheets: Cup method[S]. Beijing: China Standard Press, 1988. [21] 中国国家标准化管理委员会. GB/T 16928-1997包装材料试验方法透湿率[S]. 北京: 中国标准出版社, 1997.Standardization Administration of China. GB/T 16928-1997 Test method for moisture permeability of packaging materials[S]. Beijing: China Standard Press, 1997. [22] XIANG F, XIA Y, WANG Y, et al. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation[J]. Food Packaging and Shelf Life,2021,29:100701. doi: 10.1016/j.fpsl.2021.100701 [23] 向飞, 王岩, 夏玉婷, 等. 干燥温度对魔芋葡甘聚糖/纳米玉米醇溶蛋白复合膜微观结构和理化性能的影响[J]. 食品工业科技,2022,43(6):243−249. [XIANG Fei, WANG Yan, XIA Yuting, et al. Effects of drying temperature on the microstructure and physicochemical properties of konjac glucomannan/nano-zein composite films[J]. Food Industry Science and Technology,2022,43(6):243−249. [24] BACHVAROVA-NEDELCHEVA A, IORDANOVA R, KOSTOV K L, et al. Sol-gel powder synthesis in the TiO2-TeO2-ZnO system: Structural characterization and properties[J]. Arabian Journal of Chemistry,2020,13(9):7132−7146. doi: 10.1016/j.arabjc.2020.07.018 [25] WANG K, WU K, XIAO M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules,2017,105:1096−1104. doi: 10.1016/j.ijbiomac.2017.07.127 [26] LI C, XIANG F, WU K, et al. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying[J]. Carbohydrate Polymers,2020,250:116840. doi: 10.1016/j.carbpol.2020.116840 [27] PAPADAKI A, MANIKAS A C, PAPAZOGLOU E, et al. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach[J]. Food Chemistry,2022,385:132604. doi: 10.1016/j.foodchem.2022.132604 [28] XIE K, TU H, DOU Z, et al. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system[J]. Polymer,2021,215:123379. doi: 10.1016/j.polymer.2021.123379 [29] THUY V T T, HAO L T, JEON H, et al. Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging[J]. Green Chemistry,2021,23(7):2658−2667. doi: 10.1039/D0GC03647A [30] LI C, WU K, SU Y, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macromolecules,2019,138:135−143. doi: 10.1016/j.ijbiomac.2019.07.007 [31] ZHOU N, WANG L, YOU P, et al. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract[J]. International Journal of Biological Macromolecules,2021,172:515−523. doi: 10.1016/j.ijbiomac.2021.01.047 [32] OLIVEIRA T G, MAKISHI G L A, CHAMBI H N M, et al. Cellulose fiber reinforced biodegradable films based on proteins extracted from castor bean (Ricinus communis L.) cake[J]. Industrial Crops and Products,2015,67:355−363. doi: 10.1016/j.indcrop.2015.01.036 [33] BEDANE A H, EIĆ M, FARMAHINI-FARAHANI M, et al. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films[J]. Journal of Membrane Science,2015,493:46−57. doi: 10.1016/j.memsci.2015.06.009 [34] BISHAY I K, ABD-EL-MESSIEH S L, MANSOUR S H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J]. Materials & Design,2011,32(1):62−68. [35] ROMANI V P, PRENTICE-HERNANDEZ C, MARTINS V G. Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging[J]. Industrial Crops and Products,2017,97:268−274. doi: 10.1016/j.indcrop.2016.12.026 [36] HASAN M, GOPAKUMAR D A, OLAIYA N G, et al. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films[J]. International Journal of Biological Macromolecules,2020,156:896−905. doi: 10.1016/j.ijbiomac.2020.04.039 [37] ESTRADA-MONJE A, ALONSO-ROMERO S, ZITZUMBO-GUZMÁN R, et al. Thermoplastic starch-based blends with improved thermal and thermomechanical properties[J]. Polymers,2021,13(23):4263. doi: 10.3390/polym13234263 [38] ESPINO E, CAKIR M, DOMENEK S, et al. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley[J]. Industrial Crops and Products,2014,62:552−559. doi: 10.1016/j.indcrop.2014.09.017 [39] WU C, PENG S, WEN C, et al. Structural characterization and properties of konjac glucomannan/curdlan blend films[J]. Carbohydrate Polymers,2012,89(2):497−503. doi: 10.1016/j.carbpol.2012.03.034 [40] JIANG S, LIU C, WANG X, et al. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles[J]. LWT-Food Science and Technology,2016,69:251−257. doi: 10.1016/j.lwt.2016.01.053 [41] RAHMAN M M, NETRAVALI A N, TIIMOB B J, et al. Bioderived “green” composite from soy protein and eggshell nanopowder[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2329−2337.