留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析

刘书伟 沈梦霞 王燕 张田田 武天明

刘书伟,沈梦霞,王燕,等. 海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(9):236−243. doi: 10.13386/j.issn1002-0306.2022070373
引用本文: 刘书伟,沈梦霞,王燕,等. 海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(9):236−243. doi: 10.13386/j.issn1002-0306.2022070373
LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373
Citation: LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373

海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析

doi: 10.13386/j.issn1002-0306.2022070373
基金项目: 三亚市农业科技创新项目(2019NK12);海南省自然科学基金项目资助(221MS049,321RC589,423MS052);海南省科技项目资助(ZDYF2022XDNY172)。
详细信息
    作者简介:

    刘书伟(1978−),男,博士,副教授,研究方向:食品和药品资源开发,E-mail:hnlsw@163.com

    通讯作者:

    张田田(1986−),女,博士,讲师,研究方向:食品和药品资源开发,E-mail:zhangtiantian2011@163.com

  • 中图分类号: TS202.3

Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity

  • 摘要: 为探索海绵动物抗氧化提取物的提取工艺及提取物的抗氧化活性,以H. erectus海绵乙醇提取物的DPPH自由基清除率为响应值,分别考察超声温度、超声时间和超声功率3个影响因素,通过Box-Behnken响应面设计确定最佳超声提取工艺。以该工艺提取物为实验材料,分析其对DPPH自由基、ABTS+•和•OH的清除效果,通过构建H2O2氧化损伤模型研究提取物对氧化损伤L02细胞的活力和对H2O2氧化应激胞内ROS含量的影响。结果表明:可操作的最佳工艺为超声温度57 ℃,超声时间60 min,超声功率490 W,在此条件下,提取物DPPH自由基清除率为61.98%±1.52%,与预测值62.16%吻合度较好,该提取物对DPPH自由基、ABTS+•和•OH具有良好的清除效果,提取物处理组细胞活力均显著高于模型组(P<0.05),且细胞内ROS荧光强度均极显著低于模型组(P<0.01)。总之,该工艺提取物具有较广泛的抗氧化活性,对H2O2氧化损伤的L02细胞具有保护作用,该研究可为抗氧化食品添加剂的研发提供理论支撑。

     

  • 图  超声温度对DPPH自由基清除率和粗提物得率的影响

    注:图中不同小写字母表示差异显著P<0.05,图2~图3同。

    Figure  1.  Effect of ultrasonic temperature on the scavenging rate of DPPH free radical and yield of crude extract

    图  超声时间对DPPH自由基清除率和粗提物得率的影响

    Figure  2.  Effect of ultrasonic time on the scavenging rate of DPPH free radical and yield of crude extract

    图  超声功率对DPPH自由基清除率和粗提物得率的影响

    Figure  3.  Effect of ultrasonic power on the scavenging rate of DPPH free radical and yield of crude extract

    图  各因素交互作用对DPPH自由基清除率的响应面和等高线图

    Figure  4.  Response surface and contour figures of the interaction effects of various factors on the scavenging rate of DPPH free radicals

    图  提取物对3种自由基的清除效果

    Figure  5.  The scavenging effect of the extract on three free radicals

    图  提取物对H2O2氧化损伤L02细胞活力的影响

    注:*表示差异显著(P<0.05),**表示差异极显著(P<0.01);+表示添加,−表示未添加;图7同。

    Figure  6.  Effects of extracts on the viability of L02 cells damaged by H2O2 oxidation

    图  提取物对H2O2氧化应激L02细胞内ROS的影响

    Figure  7.  Effect of extracts on reactive oxygen species in L02 cells with H2O2-induced oxidative damage

    表  1  Box-Behnken设计的因素与水平

    Table  1.   Factors and levels of Box-Behnken design

    因素编码水平
    −101
    超声温度(℃)A405060
    超声时间(min)B506070
    超声功率(W)C400500600
    下载: 导出CSV

    表  2  Box-Behnken试验设计结果

    Table  2.   Results of Box-Behnken experiments design

    试验号A超声温度B超声时间C超声功率Y DPPH自由基清除率(%)
    101−148.08±2.25
    201141.69±2.59
    3−1−1038.82±2.41
    41−1046.31±1.70
    500062.03±1.11
    611041.65±1.25
    7−11042.76±2.21
    800061.80±1.26
    910−145.36±1.59
    100−1144.22±2.50
    11−10−146.01±3.34
    1210144.31±1.01
    1300061.79±1.70
    1400061.98±2.82
    15−10137.47±1.33
    160−1−147.49±2.13
    1700062.09±3.15
    下载: 导出CSV

    表  3  回归模型方程的方差分析

    Table  3.   Variance analysis of regression model equation

    方差来源平方和自由度均方FP显著性
    回归模型1297.099144.123800.45<0.0001**
    A-超声温度19.75119.75520.820.0001**
    B-超声时间0.8810.8823.320.019*
    C-超声功率46.32146.321221.46<0.0001**
    AB18.49118.49487.58<0.0001**
    AC14.03114.03369.84<0.0001**
    BC2.4312.4364.17<0.0001**
    A2492.731492.7312993.24<0.0001**
    B2321.281321.288472.16<0.0001**
    C2258.321258.326811.96<0.0001**
    残差0.2770.038
    失拟项0.1930.0643.430.1323N
    净误差0.07440.019
    总离差1297.3616
    R2=0.9998,R2adj=0.9995
    注:*代表P<0.05,**代表P<0.01,N代表差异无统计学意义,“−”表示无此项。
    下载: 导出CSV
  • [1] UKOWIAK M. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: A review[J]. Peer J,2020,8(2):e10601.
    [2] PAUL V J, FREEMAN C J, AGARWAL V. Chemical ecology of marine sponges: New opportunities through “-Omics”[J]. Integrative and Comparative Biology,2019,59(4):765−776. doi: 10.1093/icb/icz014
    [3] ANTENEH Y S, YANG Q, BROWN M H, et al. Antimicrobial activities of marine sponge-associated bacteria[J]. Microorganisms,2021,9(1):171. doi: 10.3390/microorganisms9010171
    [4] El-DEMERDASH A, ATANASOV A G, HORBANCZUK O K, et al. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review[J]. Mar Drugs,2019,17(2):115. doi: 10.3390/md17020115
    [5] DATTA D, TALAPATRA S N, SWARNAKAR S. Bioactive compounds from marine invertebrates for potential medicines-An overview[J]. Int Lett Nat Sci,2015,34:42−61.
    [6] MARIEKE K DIRK M, RENE W. Towards commercial production of sponge medicines[J]. Mar Drugs,2009,7(4):787−802. doi: 10.3390/md7040787
    [7] SIMMONS T L, ANDRIANASOLO E, MCPHAIL K, et al. Marine natural products as anticancer drugs[J]. Mol Cancer Ther,2005,4(2):333. doi: 10.1158/1535-7163.333.4.2
    [8] NEWMAN D J, CRAGG G M. Marine natural products and related compounds in clinical and advanced preclinical trials[J]. J Nat Prod,2004,67(8):1216−1238. doi: 10.1021/np040031y
    [9] CARROLL A R, COPP B R, DAVI S, et al. Marine natural products[J]. Nat Prod Rep,2019,36:122−173. doi: 10.1039/C8NP00092A
    [10] ZHU J Y, LIU Y, LIU Z J, et al. Bioactive nitrogenous secondary metabolites from the marine sponge genus Haliclona[J]. Mar Drugs,2019,17(12):682. doi: 10.3390/md17120682
    [11] NADAR V M, MANIVANNAN S, CHINNAIYAN R, et al. Review on marine sponge alkaloid, aaptamine: A potential anti-bacterial and anti-cancer drug[J]. Chem Biol Drug Des,2022,99:103−110. doi: 10.1111/cbdd.13932
    [12] ZHANG B, ZHANG T, XU J Z, et al. Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery: A review[J]. Mini Rev Med Cheistry,2020,20:1966−2010. doi: 10.2174/1389557520666200826123248
    [13] CHENG M M, TANG X L, SUN Y T, et al. Biological and chemical diversity of marine sponge-derived microorganisms over the last two decades from 1998 to 2017[J]. Molecules,2020,25(4):853. doi: 10.3390/molecules25040853
    [14] SYAMSUDIN A, AWIK P D N, SRI N, et al. Cytotoxic and antioxidant activities of marine sponge diversity at pecaron bay pasir putih situbondo East Java, Indonesia[J]. J Phar Res,2013,6(7):685−689.
    [15] ZHANG H W, ZHAO Z P, WANG H. Cytotoxic natural products from marine sponge-derived microorganisms[J]. Mar Drugs,2017,15(3):68. doi: 10.3390/md15030068
    [16] CAMPOS P E, PICKON E, MORIOU C, et al. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata[J]. Mar Drugs,2019,17(3):167. doi: 10.3390/md17030167
    [17] KIM Y A, JI Y K, KIM N H, et al. Isoquinolinequinone derivatives from a marine sponge (Haliclona sp.) regulate inflammation in vitro system of intestine[J]. Mar Drugs,2021,19(2):90. doi: 10.3390/md19020090
    [18] TINTILLIER F, MORIOU C, PETEK S, et al. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge Pseudoceratinan sp.[J]. Mar Drugs,2020,18(5):272. doi: 10.3390/md18050272
    [19] MUTHIYAN R, MAHANTA N, NAMBIKKAIRAJ B, et al. Antioxidant and anti-inflammatory effects of a methanol extract from the marine sponge Hyrtios erectus[J]. Phcog Mag,2018,14:534−540. doi: 10.4103/pm.pm_133_17
    [20] HU T Y, ZHANG H, CHEN Y Y, et al. Dysiarenone from marine sponge Dysidea arenaria attenuates ROS and inflammation via inhibition of 5-LOX/NF-κB/MAPKs and upregulation of Nrf-2/OH-1 in RAW 264.7 macrophages[J]. J Inf Res,2021,14:587−597. doi: 10.2147/JIR.S283745
    [21] GINER R M, RÍOS J L, MÁÑEZ S. Antioxidant activity of natural hydroquinones[J]. Antioxidants,2022,11(2):343. doi: 10.3390/antiox11020343
    [22] SUNARWIDHI A L, ROSYANTARI A, PRASEDYA E S, et al. The correlation between total protein content and antioxidant activity of collagen isolated from a marine sponge Stylissa flabelliformis collected from North Lombok Indonesia coast[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 913(1): 012103.
    [23] OOGARAH P N, RAMANJOOLOO A, ROVISHAM J, et al. Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters[J]. International Journal of Pharmacognosy and Phytochemical Research,2020,12:123−131.
    [24] AFSHARI K, SAMAVATI V, SHAHIDI S A. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf[J]. International Journal of Biological Macromolecules,2015,74:558−567. doi: 10.1016/j.ijbiomac.2014.07.023
    [25] 张红军. 三种西沙海绵化学成分和生物活性研究[D]. 上海: 第二军医大学, 2009

    ZHANG H J. Chemical constituents and bioactivities of three marine sponges from Paracel Islands[D]. Shanghai: The Second Military Medical University, 2009.
    [26] YOUSSEF D T A. Hyrtioerectines A-C, Cytotoxic Alkaloids from the red sea sponge Hyrtios erectus[J]. Journal of Natural Products,2005,68(9):1416−1419. doi: 10.1021/np050142c
    [27] SWANTARA I M D, RITA W S, HERNINDY R A. Isolation and phytochemical test of anticancer isolate of sponge Hyrtios erecta[J]. Jhsm Unud J,2017,1:16−20. doi: 10.24843/JHSM.2017.v01.i01.p05
    [28] AL-MASSARANI S M, EL-GAMAL A A, AL-SAID M S, et al. Studies on the red sea sponge Haliclona sp. for its chemical and cytotoxic properties[J]. Pharmacognosy Magazine,2016,12(46):114. doi: 10.4103/0973-1296.177906
    [29] 陈江艳, 王维滔, 董益阳, 等. 响应面优化蒲公英橡胶草菊糖提取工艺及其MALDI-TOF MS分析[J]. 食品工业科技,2022,43(1):205−212. [CHEN J Y, WANG W T, DONG Y Y, et al. Optimization of extraction of inulin from Taraxacum kok-saghyz Rodin by response surface methodology and its MALDI-TOF MS analysis[J]. Science and Technology of Food Industry,2022,43(1):205−212.
    [30] 钱燕芳, 石晨莹, 陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(16):201−210. [QIAN Yanfang, SHI Chenying, CHEN Guitang. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori fructus and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(16):201−210. doi: 10.13386/j.issn1002-0306.2021110007
    [31] 叶兆伟, 叶润, 赫丁轩, 等. 息半夏多糖提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):90−98. [YE Z W, YE R, HAO D X, et al. Optimization of polysaccharide extraction from Xi Pinellia ternate by response surface methodology and its antioxidant activity[J]. China Food Additives,2022,33(1):90−98. doi: 10.19804/j.issn1006-2513.2022.01.014
    [32] 常国立, 房祥军, 陈明, 等. 杨梅核多酚提取优化及体外抗氧化和降血糖活性研究[J]. 食品科技,2022,47(1):212−218. [CHANG G L, FANG X J, CHEN M, et al. Extraction optimization and in vitro antioxidant and hypoglycemic activity of polyphenols from Myrica rubra kernel[J]. Food Science and Technology,2022,47(1):212−218. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201032
    [33] AATI H N, EL-GAMAL A, KAYSER O. Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia[J]. Saudi Pharm J,2019,27(1):88−95. doi: 10.1016/j.jsps.2018.09.001
    [34] 杜毅超, 张浩, 黄治伟, 等. 芹菜素对H2O2诱导人肝细胞L02氧化损伤模型的影响[J]. 临床肝胆病杂志,2020,36(5):1077−1081. [DU Y C, ZHANG H, HUANG Z W, et al. Effect of apigenin on H2O2-induced oxidative injury in human hepatocytes L02[J]. J Clin Hepatol,2020,36(5):1077−1081. doi: 10.3969/j.issn.1001-5256.2020.05.025
    [35] LI C, YANG F, HUANG Y, et al. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality[J]. Journal of Food Engineering,2020,265:109697. doi: 10.1016/j.jfoodeng.2019.109697
    [36] YE L, ZHU X, WEI X. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation[J]. Ultrasonics Sonochemistry,2020,67:105175. doi: 10.1016/j.ultsonch.2020.105175
    [37] 罗维巍, 李双, 刁全平, 等. 响应面法优化超声提取酸浆宿萼中叶黄素的工艺及抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):62−68. [LUO W W, LI S, DIAO Q P, et al. Optimization of ultrasonic extraction process for lutein from calyx of Physalis by response surface methodology and its antioxidant capacity study[J]. China Food Additives,2022,33(1):62−68.
    [38] 杨秋明, 宋江峰, 李大婧, 等. 响应面法优化超声波提取南瓜皮叶黄素的工艺研究[J]. 食品工业科技,2018,39(1):149−155. [YANG Q M, SONG J F, LI D J, et al. Optimization of ultrasonic extraction process for lutein from pumpkin peel by response surface methodology[J]. Science and Technology of Food Industry,2018,39(1):149−155. doi: 10.13386/j.issn1002-0306.2018.01.028
    [39] GUO H, CHENG J, MAO Y, et al. Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production[J]. Bioresource Technology,2022,343:126087. doi: 10.1016/j.biortech.2021.126087
    [40] UTKINA N K. Antioxidant activity of zyzzyanones and makaluvamines from the marine sponge Zyzzya fuliginosa[J]. Natural Product Communications,2013,8(11):1551−1552.
    [41] 崔素萍, 陈丹, 穆秋霞, 等. 细胞氧化应激的危害及抗氧化应激的研究进展[J]. 黑龙江八一农垦大学学报,2022,34(4):74−79, 133. [CUI S P, CHEN D, MU Q X, et al. Harm of cellular oxidative stress and research progress of anti-oxidative stress[J]. Journal of Heilongjiang Bayi Agricultural University,2022,34(4):74−79, 133. doi: 10.3969/j.issn.1002-2090.2022.04.011
    [42] 蔡瑾, 闫然, 王梦亮, 等. 二氢槲皮素对大肠杆菌的抑菌作用机理[J/OL]. 食品科学: 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.

    CAI J, YAN R, WANG M L, et al. The mechanism of antimicrobial action of dihydroquercetin against Escherichia coli[J]. Food Science, 1−14 [2022-09-26] DOI: 10.7506/spkx1002-6630-20220512-148.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回