留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型

余松柏 黄张君 吴奇霄 贾俊杰 王红梅 王松涛 沈才洪

余松柏,黄张君,吴奇霄,等. 基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型[J]. 食品工业科技,2023,44(10):311−319. doi: 10.13386/j.issn1002-0306.2022080039
引用本文: 余松柏,黄张君,吴奇霄,等. 基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型[J]. 食品工业科技,2023,44(10):311−319. doi: 10.13386/j.issn1002-0306.2022080039
YU Songbai, HUANG Zhangjun, WU Qixiao, et al. Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum[J]. Science and Technology of Food Industry, 2023, 44(10): 311−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080039
Citation: YU Songbai, HUANG Zhangjun, WU Qixiao, et al. Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum[J]. Science and Technology of Food Industry, 2023, 44(10): 311−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080039

基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型

doi: 10.13386/j.issn1002-0306.2022080039
基金项目: 四川省固态酿造技术创新中心建设(2021ZYD0102)。
详细信息
    作者简介:

    余松柏(1992−),男,硕士,工程师,研究方向:食品检测分析技术、生物质降解,E-mail:chemsongbai@126.com

    通讯作者:

    黄张君(1987−),女,博士,工程师,研究方向:酒类新产品的研究和开发,E-mail:huangzj0331@163.com

  • 中图分类号: TS207.3

Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum

  • 摘要: 为满足对于酒用高粱直链淀粉、支链淀粉、蛋白质、脂肪、单宁含量快速检测的需求,本文采用17种光谱数据预处理方法和4种波段挑选算法建立了这些指标的近红外光谱分析模型。结果表明,各指标最佳光谱预处理方法分别为一阶导数+多元散射校正+Z-score标准化、矢量归一化+均指中心化、标准正态变量变换+Z-score标准化、多元散射校正、标准正态变量变换+Z-score标准化,预测直链淀粉、支链淀粉、蛋白质、单宁含量最佳的波段挑选方法为蒙特卡洛-无信息变量消除,脂肪为竞争自适应重加权采样法。整粒高粱这5项指标最优模型的决定系数(R2)分别为0.9560、0.8765、0.9069、0.8658、0.8841,交叉验证均方根误差(RMSECV)值分别为1.3222、2.3477、0.3549、0.2164、0.1077,外部独立样品验证结果显示模型预测准确率高。本文所建立的近红外分析模型可为酿酒行业实现对高粱的快检提供技术参考。

     

  • 图  高粱样品的近红外光谱图

    Figure  1.  Near infrared spectra of sorghum samples

    图  高粱样本近红外光谱图的主成分分析

    Figure  2.  Principal component analysis of near infrared spectrum for sorghum samples

    图  高粱蛋白质近红外定量分析模型

    Figure  3.  Quantitative NIR model of sorghum proteins

    图  外部独立样品验证高粱各指标的近红外光谱预测模型

    Figure  4.  NIR prediction model for physicochemical indexes of sorghums verified by external independent samples

    图  高粱各指标近红外预测模型回收率在80%~120%之间的占比统计

    Figure  5.  Statistics for proportion between 80% and 120% of NIR prediction model recoveries for each index of sorghums

    表  1  不同光谱预处理方法高粱理化指标的主要评价参数

    Table  1.   Main evaluation parameters of physical and chemical indexes of sorghum with different spectrum pretreatments

    建模指标序号预处理方法附加预处理方法波长变量推荐因子数RMSECV
    直链淀粉1780192.2603
    2均值中心化780192.1086
    3Z-score标准化780192.0766
    4标准正态变量变换+去趋势Z-score标准化780172.0760
    5去趋势Z-score标准化780182.0918
    6减去一条直线Z-score标准化780172.1389
    7多元散射校正Z-score标准化780162.1504
    8一阶导+多元散射校正Z-score标准化780152.2052
    9标准正态变量变换Z-score标准化780172.2627
    10矢量归一化Z-score标准化780182.3058
    支链淀粉1780143.3035
    2均值中心化780133.1574
    3Z-score标准化780133.1807
    4矢量归一化均值中心化780162.7791
    5一阶导+多元散射校正均值中心化780102.8253
    6一阶导+标准正态变量变换均值中心化780102.8503
    7一阶导+矢量归一化均值中心化780102.8767
    8多元散射校正均值中心化780122.9310
    9减去一条直线均值中心化780122.9604
    10一阶导+减去一条直线均值中心化780102.9787
    蛋白质1780100.5933
    2均值中心化780130.5803
    3Z-score标准化780130.5732
    4标准正态变量变换+去趋势Z-score标准化780180.4620
    5标准正态变量变换Z-score标准化780190.4709
    6多元散射校正Z-score标准化780180.4903
    7最大最小归一化Z-score标准化780130.4933
    8一阶导+标准正态变量变换Z-score标准化78060.4947
    9一阶导+减去一条直线Z-score标准化78080.4957
    10一阶导+多元散射校正Z-score标准化78060.5115
    脂肪178070.3377
    2均值中心化78070.3186
    3Z-score标准化78070.3313
    4标准正态变量变换均值中心化78060.3148
    5矢量归一化均值中心化78060.3148
    6多元散射校正均值中心化78060.3175
    7减去一条直线均值中心化78070.3186
    8导数均值中心化78060.3214
    9最大最小归一化均值中心化78060.3239
    10一阶导+多元散射校正均值中心化78060.3240
    单宁178090.2400
    2均值中心化78090.2384
    3Z-score标准化78090.2368
    4减去一条直线Z-score标准化780100.2107
    5一阶导+减去一条直线Z-score标准化78090.2196
    6标准正态变量变换+去趋势Z-score标准化78090.2212
    7标准正态变量变换Z-score标准化78090.2235
    8去趋势Z-score标准化78090.2245
    9多元散射校正Z-score标准化78090.2262
    10矢量归一化Z-score标准化78070.2292
    下载: 导出CSV

    表  2  高粱理化指标近红外预测模型的主要参数

    Table  2.   Main parameters of the NIR prediction model for physicochemical indexes of sorghums

    指标序号波段挑选方法挑选波段(cm−1光谱处理方法波长变量因子数RMSECVR2
    直链淀粉1反向区间PLS-区间分段数104598、4606、…去趋势+Z-score标准化546171.46900.9457
    2无信息变量消除4058、4066、…减去一条直线+Z-score标准化156131.61360.9345
    3蒙特卡罗-无信息变量消除4027、4035、…一阶导+多元散射校正+Z-score标准化220141.32220.9560
    4竞争自适应重加权采样4042、4050、…一阶导+多元散射校正+Z-score标准化43130.95610.9770
    支链淀粉1反向区间PLS-区间分段数104004、4011、…矢量归一化+均值中心化390142.58540.8502
    2无信息变量消除4035、4042、…一阶导+标准正态变量变换+均值中心化16482.57270.8516
    3蒙特卡罗-无信息变量消除4197、4413、…矢量归一化+均值中心化90132.34770.8765
    4竞争自适应重加权采样4081、4197、…矢量归一化+均值中心化24122.04090.9067
    蛋白质1反向区间PLS-区间分段数104004、4011、…标准正态变量变换+Z-score标准化546200.36310.9025
    2无信息变量消除4104、4112、…标准正态变量变换+去趋势+Z-score标准化118140.38940.8879
    3蒙特卡罗-无信息变量消除4135、4359、…标准正态变量变换+Z-score标准化230150.35490.9069
    4竞争自适应重加权采样4652、4937、…标准正态变量变换+去趋势+Z-score标准化30140.26680.9474
    脂肪1反向区间PLS-区间分段数104004、4011、…矢量归一化+均值中心化62470.28340.6963
    2反向区间PLS-区间分段数205200、5207、…一阶导+矢量归一化+Z-score标准化234110.23400.7235
    3反向区间PLS-区间分段数305254、5261、…一阶导+矢量归一化+Z-score标准化234110.23370.7269
    4无信息变量消除4011、4019、…导数+均值中心化19740.30690.6222
    5蒙特卡罗-无信息变量消除4343、4613、…多元散射校正+均值中心化6050.29360.7036
    6蒙特卡罗-无信息变量消除4027、4050、…标准正态变量变换+Z-score标准化21060.25670.7704
    7竞争自适应重加权采样4760、4775、…一阶导+矢量归一化+均值中心化4340.26060.8405
    8竞争自适应重加权采样4613、4629、…标准正态变量变换+Z-score标准化3670.21640.8658
    单宁1反向区间PLS-区间分段数104598、4606、…去趋势+Z-score标准化468110.15460.8136
    2反向区间PLS-区间分段数203996-5192、…矢量归一化+Z-score标准化546180.12880.8569
    3反向区间PLS-区间分段数303996-5007、…消除常数偏移量+Z-score标准化546130.12560.8608
    4无信息变量消除4096、4212、…Z-score标准化239110.14490.8188
    5蒙特卡罗-无信息变量消除4212、4220、…标准正态变量变换+去趋势+Z-score标准化150110.14380.8103
    6竞争自适应重加权采样4189、4235、…消除常数偏移量+Z-score标准化4070.10780.8975
    76061~10000消除常数偏移量+Z-score标准化492130.14680.8212
    8蒙特卡罗-无信息变量消除4259、4266、…多元散射校正140120.10770.8841
    注:模型验证方式为内部交叉验证,验证抽样方法为K折系统抽样。
    下载: 导出CSV

    表  3  高粱籽粒整粒和粉碎样品的近红外模型影响

    Table  3.   Comparison of NIR models of intact and crushed sorghum samples

    测定指标高粱形态波段挑选方法光谱处理方法波长变量因子数RMSECVR2
    直链淀粉整粒蒙特卡罗-无信息变量消除一阶导+多元散射校正+Z-score标准化220141.32220.9560
    粉碎蒙特卡罗-无信息变量消除一阶导+矢量归一化+Z-score标准化176130.87390.9742
    支链淀粉整粒蒙特卡罗-无信息变量消除矢量归一化+均值中心化90132.34770.8765
    粉碎蒙特卡罗-无信息变量消除标准正态变量变换+去趋势+均值中心化125152.28790.8780
    蛋白质整粒蒙特卡罗-无信息变量消除标准正态变量变换+Z-score标准化230150.35490.9069
    粉碎蒙特卡罗-无信息变量消除一阶导+标准正态变量变换+均值中心化230130.11710.9889
    脂肪整粒竞争自适应重加权采样标准正态变量变换+Z-score标准化3670.21640.8658
    粉碎竞争自适应重加权采样Z-score标准化85130.09320.8692
    单宁整粒蒙特卡罗-无信息变量消除多元散射校正140120.10770.8841
    粉碎反向区间PLS-区间分段数30多元散射校正+Z-score标准化312120.07760.9414
    下载: 导出CSV
  • [1] 钟敏, 张健. 原料糯高粱对酱香型白酒品质影响的研究现状[J]. 中国酿造,2022,41(1):32−36. [ZHONG M, ZHANG J. Research status of effect of raw glutinous sorghum on quality of sauce-flavor Baijiu[J]. Chinese Brewing,2022,41(1):32−36. doi: 10.11882/j.issn.0254-5071.2022.01.006
    [2] 孙细珍, 熊亚青, 杜佳炜, 等. 不同品种高粱小曲白酒感官表征及重要风味物质对比分析[J]. 食品与发酵工业,2022,48(9):7. [SUN X X, XIONG Y Q, DU J W, et al. Comparative analysis of aroma compounds in Xiaoqu Baijiu fermented by different varieties of sorghum[J]. Food and Fermentation Industries,2022,48(9):7.
    [3] 程度, 曹建兰, 王珂佳, 等. 高粱对酱香型白酒品质影响的研究进展[J]. 食品科学,2022,43(7):356−364. [CHENG D, CAO J L, WANG K J, et al. Progress in understanding the effect of sorghum on the quality of Maotai-flavor Baijiu[J]. Food Science,2022,43(7):356−364. doi: 10.7506/spkx1002-6630-20210116-182
    [4] 张北举, 陈松树, 李魁印, 等. 基于近红外光谱的高粱籽粒直链淀粉, 支链淀粉含量检测模型的构建与应用[J]. 中国农业科学,2022,55(1):26−35. [ZHANG B J, CHEN S S, LI K Y, et al. Construction and application of detection model for amylose and amylopectin content in sorghum grains based on near infrared spectroscopy[J]. Scientia Agricultura Sinica,2022,55(1):26−35. doi: 10.3864/j.issn.0578-1752.2022.01.003
    [5] 时伟, 郑红梅, 柴丽娟, 等. 酒用高粱的营养成分及其酿造性能研究进展[J]. 食品与发酵工业, 2022, 48(21):11

    SHI W, ZHENG H M, CHAI L J, et al. Research progress on the nutritional components and brewing performance of brewing sorghum[J]. Food and Fermentation Industries, 2022, 48(21):11.
    [6] HOU Y, YUAN T J, XU J, et al. Study on identification of different producing areas of Gastrodia elata using multivariable selection and two-dimensional correlation spectroscopy of near infrared spectroscopy[J]. China Journal of Chinese Materia Medica,2019,44(4):740−749.
    [7] CUI J, LI P, CAO L, et al. Achievement of broadband near-infrared phosphor Ca3Y2Ge3O12: Cr3+, Ce3+ via energy transfer for food analysis[J]. Journal of Luminescence,2021,237:118170. doi: 10.1016/j.jlumin.2021.118170
    [8] KHOSROSHAHI M E, PATEL Y, CHABOK R. Characterization of breast cancer antibody (anti-HER-II) conjugated on PEGylated gold nanourchin for active targeting[J]. Gold Bulletin,2022,55:149−159. doi: 10.1007/s13404-022-00316-w
    [9] 王海英, 杨玉珍, 任国军, 等. 利用近红外技术对河套原酒入库指标的检测研究[J]. 酿酒科技,2017(1):37−41. [WANG H Y, YANG Y Z, REN G J, et al. Rapid detection of warehousing indexes of hetao base liquor by using near infrared technology[J]. Liquor-Making Science & Technology,2017(1):37−41. doi: 10.13746/j.njkj.2016276
    [10] OMAR J, SLOWIKOWSKI B, BOIX A. Chemometric approach for discriminating tobacco trademarks by near infrared spectroscopy[J]. Forensic Science International,2019,294:15−20. doi: 10.1016/j.forsciint.2018.10.016
    [11] CHEN H, TAN C, LIN Z, et al. Quantifying several adulterants of Noto ginseng powder by near-infrared spectroscopy and multivariate calibration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,211:280−286.
    [12] SIRSOMBOON P, POSOM J. On-line measurement of activation energy of ground bamboo using near infrared spectroscopy[J]. Renewable Energy,2019,133:480−488. doi: 10.1016/j.renene.2018.10.051
    [13] 王勇生, 李洁, 王博, 等. 基于近红外光谱扫描技术对高粱中粗脂肪、粗纤维、粗灰分含量的测定方法研究[J]. 中国粮油学报,2020,35(3):181−185. [WANG Y S, LI J, WANG B, et al. Research on measurement of crude fat, crude fiber and ash contents in sorghum using near-infrared reflectance spectroscopy method[J]. Journal of the Chinese Cereals and Oils Association,2020,35(3):181−185. doi: 10.3969/j.issn.1003-0174.2020.03.029
    [14] 苏鹏飞, 张武岗. 基于NIR高粱淀粉含量快检技术的开发研究[J]. 酿酒科技,2022(2):107−110. [SU P F, ZHANG W G. Development of rapid detection technology for starch in sorghum based on NIR[J]. Liquor-Making Science & Technology,2022(2):107−110.
    [15] 苏鹏飞, 刘丽丽, 闫宗科, 等. 基于近红外高粱水分的快速分析研究[J]. 酿酒,2021,48(1):87−90. [SU P F, LIU L L, YAN Z K, et al. Study on NIR rapid analysis of water content in the sorghum[J]. Liquor Making,2021,48(1):87−90. doi: 10.3969/j.issn.1002-8110.2021.01.018
    [16] PEIRIS K H S, BEAN S R, JAGADISH S V K. Extended multiplicative signal correction to improve prediction accuracy of protein content in weathered sorghum grain samples[J]. Cereal Chemistry,2020,97(5):1066−1074. doi: 10.1002/cche.10329
    [17] CHADALAVADA K, ANBAZHAGAN K, NDOUR A, et al. NIR Instruments and prediction methods for rapid access to grain protein content in multiple cereals[J]. Sensors,2022,22(10):3710. doi: 10.3390/s22103710
    [18] 刘敏轩, 王赟文, 韩建国. 高粱籽粒中多酚类物质的傅立叶变换近红外光谱分析[J]. 分析化学,2009,37(9):1275−1280. [LIU M X, WANG Y W, HAN J G. Determination of polyphenols in sorghum grains by near infrared reflectance spectroscopy[J]. Chinese Journal of Analytical Chemistry,2009,37(9):1275−1280. doi: 10.3321/j.issn:0253-3820.2009.09.005
    [19] 王文真, 孙采云. 应用近红外反射分析高粱籽粒蛋白质, 赖氨酸和单宁含量[J]. 河南农业科学,1993(3):7−9. [WANG W Z, SUN C Y. Analysis of sorghum grain protein, lysine and tannin content using near-infrared reflection[J]. Journal of Henan Agricultural Sciences,1993(3):7−9.
    [20] DYKES L, HOFFMANN JR L, PORTILLO-RODRIGUEZ O, et al. Prediction of total phenols, condensed tannins, and 3-deoxyanthocyanidins in sorghum grain using near-infrared (NIR) spectroscopy[J]. Journal of Cereal Science,2014,60(1):138−142. doi: 10.1016/j.jcs.2014.02.002
    [21] MABOOD F, JABEEN F, HUSSAIN J, et al. FT-NIRS coupled with chemometric methods as a rapid alternative tool for the detection & quantification of cow milk adulteration in camel milk samples[J]. Vibrational Spectroscopy,2017,92:245−250. doi: 10.1016/j.vibspec.2017.07.004
    [22] YU H Y, NIU X Y, LIN H J, et al. A feasibility study on on-line determination of rice wine composition by Vis–NIR spectroscopy and least-squares support vector machines[J]. Food Chemistry,2009,113(1):291−296. doi: 10.1016/j.foodchem.2008.06.083
    [23] CHEN J, LI M, PAN T, et al. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,219:179−185. doi: 10.1016/j.saa.2019.03.105
    [24] SHI H, LEI Y, PRATES L L, et al. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat[J]. Food Chemistry,2019,272:507−513. doi: 10.1016/j.foodchem.2018.08.075
    [25] GORDON R, CHAPMAN J, POWER A, et al. Unfrazzled by fizziness: Identification of beers using attenuated total reflectance mid-infrared spectroscopy and multivariate analysis[J]. Food Analytical Methods,2018,11(9):2360−2367. doi: 10.1007/s12161-018-1225-y
    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15683-2008 大米直链淀粉含量的测定[S]. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 15683-2008 Rice-Determination of amylose content[S]. Beijing: Standards Press of China, 2008.
    [27] 中华人民共和国农牧渔业部. GB 7648-1987 水稻、玉米、谷子籽粒直链淀粉测定法[S]. 北京: 中国标准出版社, 1987

    Ministry of Agriculture, Animal Husbandry and Fisheries of the People's Republic. GB 7648-1987 Determination of amylose of rice, maize and millet grain[S]. Beijing: Standards Press of China, 1987.
    [28] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016

    State Family Planning Commission of the People's Republic of China, State Administration for Market Regulation. GB 5009.6-2016 National Standard for Food Safety Determination of fat in food[S]. Beijing: Standards Press of China, 2016.
    [29] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 6432-2018 饲料中粗蛋白的测定 凯氏定氮法[S]. 北京: 中国标准出版社, 2018

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 6432-2018 Determination of crude protein in feed Kjeldahl nitrogen determination method[S]. Beijing: Standards Press of China, 2018.
    [30] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 15686-2008 高粱 单宁含量的测定[S]. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 15686-2008 Determination of tannin content in sorghum[S]. Beijing: Standards Press of China, 2008.
    [31] SAMPAIO P S, SOARES A, CASTANHO A, et al. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms[J]. Food Chemistry,2018,242:196−204. doi: 10.1016/j.foodchem.2017.09.058
    [32] 杨丹, 刘新, 王川丕, 等. 绿茶样品粒度对近红外光谱图和模型的影响[J]. 食品科技,2012(11):278−281. [YANG D, LIU X, WANG C P, et al. Effect of green tea particle size on near infrared spectrogram and nitrogen content model[J]. Food Science and Technology,2012(11):278−281. doi: 10.13684/j.cnki.spkj.2012.11.017
    [33] BIAN X, WANG K, TAN E, et al. A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples[J]. Chemometrics and Intelligent Laboratory Systems,2020,197:103916. doi: 10.1016/j.chemolab.2019.103916
    [34] 雷敬卫, 李小庆, 白雁, 等. 近红外光谱法快速测定逍遥丸(浓缩丸)中水分含量[J]. 中国实验方剂学杂志,2013,19(19):132−135. [LEI J W, LI X Q, BAI Y, et al. Rapid determination of moisture in Xiaoyao pills (condensed) by near-infrared spectroscopy[J]. Chinese Journal of Experimental Traditional Medical Formulae,2013,19(19):132−135.
    [35] 余梅, 李尚科, 杨菲, 等. 基于近红外光谱技术与优化光谱预处理的陈皮产地鉴别研究[J]. 分析测试学报,2021,40(1):65−71. [YU M, LI S K, YANG F, et al. Identification on different origins of citri reticulatae pericarpium using near infrared spectroscopy combined with optimized spectral pretreatments[J]. Journal of Instrumental Analysis,2021,40(1):65−71.
    [36] LIU X W, CUI X Y, YU X M, et al. Understanding the thermal stability of human serum proteins with the related near-infrared spectral variables selected by Monte Carlo-uninformative variable elimination[J]. Chinese Chemical Letters,2017,28(7):1447−1452. doi: 10.1016/j.cclet.2017.03.021
    [37] 熊雅婷, 李宗朋, 王健, 等. 近红外光谱波段优化在白酒酒醅成分分析中的应用[J]. 光谱学与光谱分析,2016,36(1):84−90. [XIONG Y T, LI Z P, WANG J, et al. The near infrared spectral bands optimal selection in the application of liquor fermented grains composition analysis[J]. Spectroscopy and Spectral Analysis,2016,36(1):84−90.
    [38] JUN L Y, CHEN H C, JIN L, et al. Near infrared determination of the content of caffeine in tea polyphenol[J]. Spectroscopy and Spectral Analysis,2005,25(8):1243−1245.
    [39] 李霞. 基于近红外光谱技术的赤霞珠干红葡萄酒品质指标检测方法研究[D]. 咸阳: 西北农林科技大学, 2018

    LI X. Rapid detection of quality index in cabernet sauvignon red wine based on near-infrared spectroscopy[D]. Xianyang: Northwest A & F University, 2018.
    [40] 成云玲. 基于近红外高光谱成像技术的酿酒葡萄分类及单宁含量检测[D]. 咸阳: 西北农林科技大学, 2020

    CHENG Y L. Detection of wine grape classification and tannins content based on near infrared hyperspectral imaging[D]. Xianyang: Northwest A & F University, 2020.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回