Application of Nanomaterials in Preservation of Ginseng, Vegetable and Fruit
-
摘要: 近年来纳米材料发展迅速,由于其具有易加工、韧性强、能吸附和抑菌活性强等优良特性,在果疏等食品保鲜方面应用广泛。本文从纳米材料的制备及特性,人参、蔬菜和水果等食品的纳米涂膜复合保鲜和纳米包装材料保鲜等方面进行综述,通过与普通保鲜材料对比发现了纳米涂膜保鲜材料和纳米包装保鲜材料的强抑菌活性、高抗氧化活性、高VC和叶绿素保持率、低失重率、绿色环保、易降解和抑制木质化劣变现象等优势。纳米保鲜材料主要通过形成高CO2高湿和低O2的环境,减弱呼吸作用,降低食品腐烂率,延长食品货架期。此外纳米保鲜材料还存在纳米迁移和细胞毒性等问题,未来要加强对纳米材料的安全性能评价,期望本文为纳米材料在人参等食品保鲜中的应用提供科技支撑。Abstract: Nanomaterials have developed rapidly in recent years and have been widely used in the preservation of foods such as fruit and vegetable because of their easy processing, toughness, ability to adsorb and strong antibacterial activity. This paper reviews the preparation and characteristics of nano materials, the preservation of ginseng, vegetable and fruit by nano-coating and nano-packaging materials. By comparing with ordinary preservation materials, the strong antibacterial activity, high antioxidant activity, high vitamin C and chlorophyll retention, low weight loss rate, green environment, easy degradation and inhibition of lignification deterioration of nano-coated film preservation materials and nano-packaging preservation materials are highlighted. The advantages of nano-packaging preservation materials can reduce the rate of food spoilage and prolong the shelf life of food by forming an environment with high CO2, high humidity and low O2, which weakens respiration. In addition, nano-preservation materials have problems such as nano-migration and cytotoxicity, and the evaluation of the safety performance of nanomaterials should be strengthened in the future. This paper provides scientific and technological support for the application of nanomaterials in the preservation of ginseng and other food.
-
Key words:
- nano material /
- food preservation /
- ginseng /
- vegetable /
- fruit
-
表 1 普通包装材料与纳米包装材料优缺点的对比
Table 1. Comparison of advantages and disadvantages of ordinary packaging materials and nano-packaging materials
表 2 四种纳米复合保鲜材料制备方法优缺点的对比
Table 2. Comparison of advantages and disadvantages of the four preparation methods of nano-composite preservation materials
表 3 不同人参保鲜方法对比
Table 3. Comparison of different methods of ginseng preservation
保鲜方 法 保鲜材料的组成 保鲜温度 保鲜时间 保鲜效果 参考文献 沙藏保鲜 土壤、蛭石和珍珠岩 4 ℃ 6 个月 珍珠岩保鲜人参中皂苷、蛋白含量较高, 参体外观品相完好,
具有成活能力;SOD酶和POD酶活性较低[26] 气调保鲜 聚氯乙烯膜 0 ℃ 210 d 抑制呼吸速率,降低质量损失率和腐烂率,总皂苷、还原糖和果胶含量较高 [27] 涂膜保鲜 海藻酸钠、柠檬酸、肉桂精油等 4 ℃
25 ℃150 d 4 °C保鲜人参失重率较低,总皂苷含量较25 °C高 [28] 辐照保鲜 60Co-γ或2和4 kGy电子束 2 ℃ 120 d 2 kGy电子束失重率较低,人参总皂苷和氨基酸含量最高 [29] 纳米涂层保鲜 壳聚糖和纳米ZnO 5 ℃ / 抑菌效果好,未包衣的4周出现霉菌,包衣的6周内未出现,
6周时微生物浓度低于微生物限值[30] 表 4 蔬菜纳米保鲜包装材料的保鲜效果对比
Table 4. Comparison of fresh-keeping effect of vegetable nano fresh-keeping packaging materials
纳米保鲜包装材料组成 保鲜蔬菜种类 保鲜条件 保鲜时间 保鲜效果 参考文献 纳米银、纳米TiO2、高岭土和PE 生菜 温度:4 ℃ 14 d 质量损失率、丙二醛含量、多酚氧化酶比活力低于
普通包装,VC和叶绿素含量高于对照组[36] 纳米银、纳米TiO2、纳米凹凸棒土、纳米SiO2和PE 双孢菇 温度:4±0.5 ℃
相对湿度:90%±5%10 d 较好地保持双孢菇的质地,抑制子实体的自溶、
木质化劣变的现象,延长贮藏时间[37] 纳米TiO2和聚乳酸膜 油菜 温度:23 ℃ 8 d 抑菌性能强,呼吸速率和腐烂率低于聚乳酸膜对照组 [38] 魔芋葡甘聚糖/角叉菜胶纳米SiO2 双孢菇 温度:4±1 ℃ 12 d 减少了水分和气体的转移,降低了双胞菇的
呼吸,延缓衰老和质量恶化[40] 表 5 纳米涂膜保鲜在水果保鲜中的研究对比
Table 5. Comparison of studies on the preservation of fruits by nano coating
-
[1] 顾广东, 朱昌保, 徐浩, 等. 纳米材料在食品储藏领域应用的研究进展[J]. 粮油食品科技,2018,26(3):80−86. [GU G D, ZHU B C, XU H, et al. Research progress of application of nanomaterials in food storage[J]. Science and Technology of Cereals, Oils and Foods,2018,26(3):80−86. doi: 10.3969/j.issn.1007-7561.2018.03.017 [2] QU P, ZHANG M, FAN K, et al. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review[J]. Critical Reviews in Food Science and Nutrition,2020,62(1):11−15. [3] 张柯, 吕中伟, 牛佳佳, 等. 不同晚熟葡萄品种低温贮藏期果实品质变化研究[J]. 中国果树,2022(4):72−75. [ZHANG K, LV Z W, NIU J J, et al. Study on changes of fruit quality of different late-ripening grape cultivars during low temperature storage[J]. China Fruits,2022(4):72−75. [4] 徐悦, 赵国建, 朱永宝, 等. 冬枣生理变化及保鲜机理研究进展[J]. 特产研究,2020,42(6):90−95. [XU Y, ZHAO G J, ZHU Y B, et al. Research progress on physiological changes and fresh keeping mechanism of Winter Jujube (DongZao)[J]. Special Wild Economic Animal and Plant Research,2020,42(6):90−95. [5] ZHANG X Y, LIU Z J, ZHONG C, et al. Structure characteristics and immunomodulatory activities of a polysaccharide RGRP-1b from radix ginseng rubra[J]. International Journal of Biological Macromolecules,2021,189:980−992. doi: 10.1016/j.ijbiomac.2021.08.176 [6] MUHAMMAD I, KWAK Y S, HAN C K, et al. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions[J]. Journal of Ginseng Research,2020,44(4):538−543. doi: 10.1016/j.jgr.2020.03.001 [7] LI W Z, WANG Y F, ZHOU X B, et al. The anti-tumor efficacy of 20(S)-protopanaxadiol, an active metabolite of ginseng, according to fasting on hepatocellular carcinoma[J]. Journal of Ginseng Research,2022,46(1):167−174. doi: 10.1016/j.jgr.2021.06.002 [8] 李曼微, 陈雪, 陈长宝. 鲜参与生晒参药理活性差异的比较分析[J]. 时珍国医国药,2020,31(9):2124−2126. [LI M W, CHEN X, CHEN C B. Comparative analysis of pharmacological activity difference of fresh ginseng[J]. Lishizhen Medicine and Materia Medica Research,2020,31(9):2124−2126. doi: 10.3969/j.issn.1008-0805.2020.09.021 [9] 肖移聪, 刘军, 马梦亚, 等. 多糖-纳米材料复合涂层在水果保鲜中的研究进展[J]. 食品与发酵工业,2023,49(5):337−343. [XIAO Y C, LIU J, MA M Y, et al. Research progress of polysaccharide-nanomaterial composite coating in fruit preservation[J]. Food and Fermentation Industries,2023,49(5):337−343. doi: 10.13995/j.cnki.11-1802/ts.031145 [10] 吴利敏, 齐暑华, 刘乃亮, 等. 纳米材料改性酚醛树脂研究进展[J]. 中国胶粘剂,2011,20(4):58−62. [WU L M, QI S H, LIU N L, et al. Research progress of PF modified by nanomaterial[J]. China Adhesives,2011,20(4):58−62. doi: 10.3969/j.issn.1004-2849.2011.04.014 [11] 陈婕, 梅林玉. 聚乳酸/茶多酚复合包装膜的制备及性能[J]. 包装工程,2021,42(23):100−108. [CHEN J, MEI L Y. Preparation and properties of polylactic acid/tea polyphenol composite packaging film[J]. Packaging Engineering,2021,42(23):100−108. [12] 刁润丽. 纳米材料的应用研究进展[J]. 佛山陶瓷,2021,31(9):5−7. [DIAO R L. Research progress on the application of nanomaterials[J]. Foshan Ceramics,2021,31(9):5−7. doi: 10.3969/j.issn.1006-8236.2021.09.003 [13] 祝钧, 苏醒, 张晓娟. 纳米包装材料在果蔬保鲜中的应用[J]. 食品科学,2008,29(12):766−768. [ZHU J, SU X, ZHANG X J. Application of nanometer packing material in fruit and vegetable fresh-keeping[J]. Food Science,2008,29(12):766−768. doi: 10.3321/j.issn:1002-6630.2008.12.179 [14] 孙新, 黄俊彦, 吴双岭, 等. 纳米复合包装材料的研究与应用进展[J]. 塑料科技,2012,40(12):100−103. [SUN X, HUANG J Y, WU S L, et al. Study and application progress of nano-composite packaging materials[J]. Plastics Science and Technology,2012,40(12):100−103. [15] 黄金, 崔朝经, 韩雪, 等. 多糖纳米材料制备、表征及在果蔬可食性涂膜中应用的研究进展[J]. 食品工业科技,2021,42(24):424−433. [HUANG J, CUI C J, HAN X, et al. Research progress on preparation, characterization and application of polysaccharide nanomaterials in edible coatings of fruits and vegetables[J]. Science and Technology of Food Industry,2021,42(24):424−433. [16] 庞琬月. 改性复合聚乙烯醇食品包装膜研究进展[J]. 食品安全导刊,2021(21):149−152. [PANG W Y. Research progress of modified composite polyvinyl alcohol food packaging film[J]. China Food Safety Magazine,2021(21):149−152. [17] SHARMA B, MALIK P, JAIN P. Biopolymer reinforced nanocomposites: A comprehensive review[J]. Materials Today Communications,2018,16:353−363. doi: 10.1016/j.mtcomm.2018.07.004 [18] ROY N, SENGUPTA R, BHOWMICK A K. Modifications of carbon for polymer composites and nanocomposites[J]. Progress in Polymer Science,2012,37(6):781−819. doi: 10.1016/j.progpolymsci.2012.02.002 [19] CHOI R N, CHEIGH C I, LEE S Y, et al. Preparation and properties of polypropylene/clay nanocomposites for food packaging[J]. Journal of Food Science,2011,76(8):N62−67. doi: 10.1111/j.1750-3841.2011.02351.x [20] DUAN N, LI Q, MENG X Y, et al. Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation[J]. Food Chemistry,2021,364:130441−130449. doi: 10.1016/j.foodchem.2021.130441 [21] BALASUBRAMANIAN R, KIM S S, LEE J, et al. Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum[J]. International Journal of Biological Macromolecules,2019,23:1020−1027. [22] 陈方飞, 李小红, 张治军. 原位聚合法制备聚合物/纳米SiO2复合材料的研究进展[J]. 化学研究,2011,22(5):99−105. [CHEN F F, LI X H, ZHANG Z J. Research progress of polymer/nano-silica composites by in-situ polymerization[J]. Chemical Research,2011,22(5):99−105. doi: 10.3969/j.issn.1008-1011.2011.05.022 [23] SUN X X, WU Q L, PICHA DAVID H, et al. Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation[J]. Carbohydrate Polymers,2021,259:117764−117776. doi: 10.1016/j.carbpol.2021.117764 [24] 高坤, 孙印石, 董昕瑜. 人参保鲜技术研究现状[J]. 特产研究,2017,39(4):63−66. [GAO K, SUN Y S, DONG X Y. Study on the present status ofPanax ginseng storage[J]. Special Wild Economic Animal and Plant,2017,39(4):63−66. [25] 李亚丽, 王荣灿, 曲正义, 等. 脱落酸对储藏鲜参的生理活性及质量指标的影响[J]. 食品工业,2021,42(10):193−197. [LI Y L, WANG R C, QU Z Y, et al. Effects of abscisic acid on physiological activity and quality indexes of fresh ginseng[J]. The Food Industry,2021,42(10):193−197. [26] 贾璐璐, 李琼, 王慧斌, 等. 不同基质对低温保鲜人参的影响[J]. 中国中药杂志,2017,42(13):2449−2452. [JIA L L, LI Q, WANG H B, et al. Effects of different substrates on low temperature fresh ginseng[J]. China Journal of Chinese Materia Medica,2017,42(13):2449−2452. doi: 10.19540/j.cnki.cjcmm.20170614.013 [27] HU W Z, XU P, UCHINO T. Extending storage life of fresh ginseng by modified atmosphere packaging[J]. Journal of the Science of Food and Agricultural,2005,85(14):2475−2481. doi: 10.1002/jsfa.2282 [28] 王聪. 淀粉基人参涂膜保鲜剂的研制[D]. 长春: 吉林农业大学, 2014.WANG C. Development of starch-based preservative coating ginseng[D]. Changchun: Jilin Agricultural University, 2014. [29] GAO K, CHEN J B, WANG Y H, et al. Effects of 60Co-γ and electron beam irradiation on storage quality of Panax ginseng[J]. Food and Bioprocess Technology,2018,11(9):1627−1638. doi: 10.1007/s11947-018-2108-3 [30] KANG S H, CHA H J, JUNG S W, et al. Application of chitosan-ZnO nanoparticle edible coating to wild-simulated Korean ginseng root[J]. Food Science Biotechnology,2022,31(5):579−586. doi: 10.1007/s10068-022-01054-7 [31] 黄良, 刘全祖, 沈祖广, 等. 果蔬气调保鲜技术的发展现状[J]. 农业与技术,2018,38(3):163−166. [HUANG L, LIU Q Z, SHEN Z G, et al. Development status of air conditioning fresh-keeping technology for fruits and vegetables[J]. Agriculture and Technology,2018,38(3):163−166. [32] 陈韵洁, 张宜明, 庞林江, 等. 纳米复合材料涂膜在甘薯保鲜中的应用及优化[J]. 包装工程,2020,41(23):1−10. [CHEN Y J, ZHANG Y M, PANG L J, et al. Application and optimization of nanocomposite coating in preservation of sweet potato[J]. Packaging Engineering,2020,41(23):1−10. [33] JUNQUEIRA-GONÇALVES M P, SALINAS G E, BRUNA J E, et al. An assessment of lactobiopolymer-montmorillonite composites for dip coating applications on fresh strawberries[J]. Journal of the Science of Food and Agriculture,2017,97(6):1846−1853. doi: 10.1002/jsfa.7985 [34] AFONSO P, JOAO R, LAURIANO S, et al. Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat[J]. Food Packaging and Shelf Life,2018,17(9):142−149. [35] 王雪. 淀粉/乳酸接枝共聚物及其淀粉基薄膜的制备与性能研究[D]. 北京: 中国地质大学, 2018.WANG X. Preparation and properties of starch/lactic graft copolymer and starch-based film[D]. Beijing: China University of Geosciences, 2018. [36] 马宁, 石学彬, 方勇, 等. 纳米包装材料对生菜保鲜品质的影响[J]. 食品科学,2012,33(18):281−285. [MA N, SHI X S, FANG Y, et al. Effects of nano-packaging materials on the quality preservation of lettuce (Lactuca sativa)[J]. Food Science,2012,33(18):281−285. [37] 李志啸, 杨文建, 方东路, 等. 纳米包装材料对双孢菇细胞壁代谢及品质的影响[J]. 食品科学,2016,37(6):248−253. [LI Z X, YANG W J, FANG D L, et al. Effects of nano-packaging on cell wall metabolism and postharvest qualities of Agaricus bisporus[J]. Food Science,2016,37(6):248−253. doi: 10.7506/spkx1002-6630-201606045 [38] XING Y, ZHEN H. Effects of polylactic acid antimicrobial films on preservation of Chinese rape[J]. Packaging Technology and Science,2020,33(11):461−468. doi: 10.1002/pts.2529 [39] 马清华, 蔡铭, 谢春芳, 等. 聚乙烯醇基SiO2/TiO2纳米包装膜制备及对双孢菇保鲜效果[J]. 食品科学,2020,41(9):182−187. [MA Q H, CAI M, XIE C F, et al. Evaluation of polyvinyl alcohol-based SiO2/TiO2 nanocomposite films and their preservation effect onAgaricus bisporus[J]. Food Science,2020,41(9):182−187. doi: 10.7506/spkx1002-6630-20190515-153 [40] ZHANG R F, WANG X Y, LI L, et al. Optimization of konjac glucomannan/carrageenan / nano-SiO2 coatings for extending the shelf-life of Agaricus bisporus[J]. International Journal of Biological Macromolecules,2019,122:857−865. doi: 10.1016/j.ijbiomac.2018.10.165 [41] YAN Y S, DUAN S Q, ZHANG H L, et al. Preparation and characterization of konjac glucomannan and pullulan composite films for strawberry preservation[J]. Carbohydrate Polymers,2020,243:116446−116454. doi: 10.1016/j.carbpol.2020.116446 [42] 王乐, 闫宇壮, 方天驰, 等. 新型食品包装材料研究进展[J]. 食品工业,2021,42(9):259−263. [WANG L, YAN Y Z, FANG T C, et al. Research progress of new food packaging materials[J]. The Food Industry,2021,42(9):259−263. [43] KANG M L, GU J J, GUO X L. Garlic oil -sodium carboxymethyl cellulose composite coating material improving strawberry preservation effect[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineer,2016,32(14):300−305. [44] 孙宛茹, 贾仕奎, 孙垚垚, 等. 多糖类可食性膜的改性与应用研究进展[J]. 现代化工,2018,38(6):52−55. [SUN W R, JIA S K, SUN Y Y, et al. Progress on modification and application of polysaccharide edible film[J]. Modern Chemical Industry,2018,38(6):52−55. doi: 10.16606/j.cnki.issn0253-4320.2018.06.012 [45] 史庆平, 李东立, 许文才. 基于乙烯含量控制的果蔬保鲜包装技术发展现状[J]. 包装工程,2011,32(7):117−121. [SHI Q P, LI L D, XU W C. Development of fruit and vegetables fresh-keeping packaging technology based on ethylene control[J]. Packaging Engineering,2011,32(7):117−121. [46] JUNG S H, CUI Y F, BARNES M, et al. Multifunctional bio-nanocomposite coatings for perishable fruits[J]. Advanced Material,2020,32(26):1908291−1908299. doi: 10.1002/adma.201908291 [47] 吕佳美悦. 羧甲基壳聚糖/纳米材料复合膜的研制[D]. 泉州: 华侨大学, 2012.LÜ J M Y. Research of making the carboxymethyl chitosan/nanomaterial composite film[D]. Quanzhou: Huaqiao University, 2012. [48] 赵悦菡, 侯召华, 纪海鹏, 等. 樱桃生理变化及保鲜机理研究进展[J]. 食品研究与开发,2021,42(23):197−203. [ZHAO Y H, HOU S H, JI H P, et al. Advance in research on physiological changes and fresh-keeping mechanism of cherries[J]. Food Research and Development,2021,42(23):197−203. doi: 10.12161/j.issn.1005-6521.2021.23.031 [49] 曾丽萍, 孟金明, 樊爱萍, 等. 外源NO联合壳聚糖/纳米TiO2涂膜复合处理对枇杷保鲜效果的影响[J]. 包装工程,2020,41(3):36−41. [ZENG L P, MENG J M, FAN A P, et al. Effects of exogenous NO combined with chitosan/nano-TiO2 coating on preservation effect of loquat fruit[J]. Packaging Engineering,2020,41(3):36−41. [50] 张蓓, 冯叙桥, 韩鹏祥, 等. 蜂胶/纳米SiO2复合涂膜对圣女果成熟与衰老过程中相关酶活性的影响[J]. 中国食品学报,2016,16(2):159−165. [ZHANG B, FENG X Q, HAN P X, et al. Effects of propolis/Nano-silica composite coating on activities of ripening and senescence related enzymes in cherry tomato fruits[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(2):159−165. [51] ZHANG S L, MA M, ZHANG H P, et al. Genome-wide analysis of polygalacturonase gene family from pear genome and identification of the member involved in pear softening[J]. BMC Plant Biology,2019,19(1):587−598. doi: 10.1186/s12870-019-2168-1 [52] LI C Y, ZHANG J H, GE Y H, et al. Postharvest acibenzolar-S-methyl treatment maintains storage quality and retards softening of apple fruit[J]. Journal of Food Biochemistry,2020,44(3):e13141−13148. [53] DE OLIVEIRA FILHO J G, MIRANDA M, FERREIRA M D, et al. Nanoemulsions as edible coatings: A potential strategy for fresh fruits and vegetables preservation[J]. Foods,2021,10(10):2438−2454. doi: 10.3390/foods10102438 [54] PLOY K, RUNGSINEE S. Active coating from hydroxypropyl methylcellulose-based nanocomposite incorporated with Thai essential oils on mango (cv. Namdokmai Sithong)[J]. Food Bioscience,2018,23:9−15. doi: 10.1016/j.fbio.2018.02.012 [55] CHU Y F, GAO C C, LIU X Y, et al. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nano emulsion[J]. LWT,2020,122:109054−109061. doi: 10.1016/j.lwt.2020.109054 [56] 罗晨, 董铮, 庄松娟, 等. 纳米银抗菌包装对虾仁冷藏过程中品质的影响[J]. 包装工程,2018,39(7):60−64. [LUO C, DONG Z, ZHUANG S J, et al. The effect of nano-silver antibacterial package on the quality of shrimp meat during cold storage[J]. Packaging Engineering,2018,39(7):60−64. [57] HUANG Y, MEI L, CHEN X, et al. Recent developments in food packaging based on nanomaterials[J]. Nanomaterials (Basel),2018,8(10):830−858. doi: 10.3390/nano8100830 [58] 隋思瑶, 马佳佳, 陆皓茜, 等. 纳米二氧化钛抗菌防雾膜的制备表征及对草莓的保鲜效果(英文)[J]. 农业工程学报,2019,35(5):302−310. [SUI S Y, MA J J, LU H Q, et al. Characterization and preparative effect of anti-fogging film prepared with nano-TiO2[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(5):302−310. [59] 吴黎明, 蒋迎春, 何利刚, 等. 纳米材料对夏橙贮藏保鲜效果的影响[J]. 湖北农业科学,2013,52(23):5776−5779. [WU L M, JIANG Y L, HE L G, et al. Effect of nanomaterials on preservation quality of valencia orange[J]. Hubei Agricultural Sciences,2013,52(23):5776−5779. [60] 于子越, 陈飞, 董威杰, 等. 纳米银的抑菌机理及其在食品储藏方面的研究进展[J]. 食品工业科技,2019,40(19):305−309. [YU Z Y, CHEN F, DONG W J, et al. Antibacterial mechanism of nano-silver and its research progress in food storage[J]. Science and Technology of Food Industry,2019,40(19):305−309. [61] YANG F M, LI H M, LI F, et al. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 degrees C[J]. Journal of Food Science,2010,75(3):C236−240. doi: 10.1111/j.1750-3841.2010.01520.x [62] 罗自生, 叶轻飏, 李栋栋. 纳米二氧化钛改性LDPE薄膜包装对草莓品质的影响[J]. 现代食品科技,2013,29(10):2340−2344, 2537. [LUO Z S, YE Q Y, LI D D. Influence of nano-TiO2 modified LDPE film packaging on the quality of strawberry[J]. Modern Food Science and Technology,2013,29(10):2340−2344, 2537. [63] 张瑶, 杨京平, 杨莹跃, 等. 添加纳米粒子的塑料包装材料在杨梅保鲜中的作用[J]. 农机化研究,2007,143(3):111−114. [ZHANG Y, YANG J P, YANG Y Y, et al. The application of Ag nanometer antimicrobial on the preservation of waxberry[J]. Journal of Agricultural Mechanization Research,2007,143(3):111−114. doi: 10.3969/j.issn.1003-188X.2007.03.036 [64] LI D D, YE Q Y, JIANG L, et al. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature[J]. Journal of the Science of Food and Agriculture,2017,97(4):1116−1123. doi: 10.1002/jsfa.7837 [65] BUMBUDSANPHAROKE N, CHOI J, PARK H J, et al. Zinc migration and its effect on the functionality of a low-density polyethylene-ZnO nanocomposite film[J]. Food Packaging and Shelf Life,2019,20:100301−100308. doi: 10.1016/j.fpsl.2019.100301 [66] MANIVONG S, GARCIA A A, PATTEN S A, et al. Chitosan-based nanogels: Synthesis and toxicity profile for drug delivery to articular joints[J]. Nanomaterials,2022,12(8):1337−1353. doi: 10.3390/nano12081337 [67] KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science,2017,249:37−52. doi: 10.1016/j.cis.2017.07.033 [68] WU Z, ZHANG B, YAN B. Regulation of enzyme activity through interactions with nanoparticles[J]. International Journal of Molecular Sciences,2009,10:4198−4209. doi: 10.3390/ijms10104198 [69] ADJEI IM, SHARMA B, LABHASETWAR V. Nanoparticles: cellular uptake and cytotoxicity[J]. Advances in Experimental Medicine and Biology,2014,811:73−91.