留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西梅膳食纤维提取工艺优化及其通便作用

徐天旭 欧阳萍 贺灵灵 贺明山 晁增友 王伟华

徐天旭,欧阳萍,贺灵灵,等. 西梅膳食纤维提取工艺优化及其通便作用[J]. 食品工业科技,2023,44(10):369−378. doi: 10.13386/j.issn1002-0306.2022080068
引用本文: 徐天旭,欧阳萍,贺灵灵,等. 西梅膳食纤维提取工艺优化及其通便作用[J]. 食品工业科技,2023,44(10):369−378. doi: 10.13386/j.issn1002-0306.2022080068
XU Tianxu, OUYANG Ping, HE Lingling, et al. Optimization of Extraction Process of Prune Dietary Fiber and Its Laxative Effect[J]. Science and Technology of Food Industry, 2023, 44(10): 369−378. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080068
Citation: XU Tianxu, OUYANG Ping, HE Lingling, et al. Optimization of Extraction Process of Prune Dietary Fiber and Its Laxative Effect[J]. Science and Technology of Food Industry, 2023, 44(10): 369−378. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080068

西梅膳食纤维提取工艺优化及其通便作用

doi: 10.13386/j.issn1002-0306.2022080068
基金项目: 新疆生产建设兵团第一师阿拉尔市科技计划项目(2021SP01)。
详细信息
    作者简介:

    徐天旭(1997−),女,硕士研究生,研究方向:食品加工与安全,E-mail:1148048422@qq.com

    通讯作者:

    王伟华(1977−),女,博士,教授,研究方向:食品营养与安全,E-mail:wangweihua6688@163.com

  • 中图分类号: TS255.1

Optimization of Extraction Process of Prune Dietary Fiber and Its Laxative Effect

  • 摘要: 目的:探究西梅可溶性膳食纤维(Soluble dietary fiber,SDF)的最优提取工艺及其通便作用。方法:采用酶法提取西梅中的SDF,通过单因素实验和响应面分析优化提取条件,再对西梅SDF进行体内试验,小鼠先灌胃7 d盐酸洛哌丁胺,建立便秘模型,随后分为低、中、高剂量组灌胃西梅SDF 14 d,观察小鼠体重、脏器系数、首粒黑便排出时间、6 h内排便粒数、粪便含水量、小肠推进率、胃排空率及胃肠组织形态学描述等指标。结果:西梅SDF最佳提取条件为:混合酶水浴时间2.9 h,纤维素酶添加量1%,纤维素酶水浴温度41 ℃,纤维素酶水浴时间3.8 h,此时得率为13.238%±0.07%,SDF含量为85.91%±0.46%。灌胃西梅SDF后,对小鼠体重和脏器系数无显著影响(P>0.05),中、高剂量组可以显著缩短排便时间、增加排便粒数、增加粪便含水量、升高小肠推进率和胃排空率(P<0.05),降低了便秘对小鼠胃肠组织的损伤,显著增加胃肠组织的厚度(P<0.05)。结论:西梅SDF对便秘小鼠具有通便作用,能够不同程度的改善便秘对胃肠屏障损伤,并对胃肠屏障起到一定的保护作用。

     

  • 图  混合酶水浴时间对西梅SDF得率的影响

    注:不同小写字母表示差异显著(P<0.05);图2~图4同。

    Figure  1.  Effect of mixed enzyme water bath time on yield of prune SDF

    图  纤维素酶添加量对西梅SDF得率的影响

    Figure  2.  Effect of cellulase addition on yield of prune SDF

    图  纤维素酶水浴温度对西梅SDF得率的影响

    Figure  3.  Effect of cellulase water bath temperature on yield of prune SDF

    图  纤维素酶水浴时间对西梅SDF得率的影响

    Figure  4.  Effect of cellulase water bath time on yield of prune SDF

    图  各因素交互作用响应面图

    Figure  5.  Factor interaction response surface plot

    图  西梅SDF对小鼠体重的影响

    Figure  6.  Effects of prune SDF on body weight of mice

    图  西梅SDF对小鼠胃组织形态影响

    注:空白对照组(A)、(B),模型对照组(C)、(D),低剂量组(E)、(F),中剂量组(G)、(H),高剂量组(I)、(J);图8~图9同。

    Figure  7.  Effects of prune SDF on the morphology of gastric tissue in mice

    图  西梅SDF对小鼠小肠组织形态影响

    Figure  8.  Effects of prune SDF on the morphology of small intestine tissue in mice

    图  西梅SDF对小鼠大肠组织形态影响

    Figure  9.  Effects of prune SDF on the morphology of large intestine tissue in mice

    表  1  Box-Behnken试验设计因素水平表

    Table  1.   Factors and levels of Box-behnken test design

    水平因素
    A混合酶水浴
    时间(h)
    B纤维素酶
    添加量(%)
    C纤维素酶水浴
    温度(℃)
    D纤维素酶水浴
    时间(h)
    −12.50.8303
    031404
    13.51.2505
    下载: 导出CSV

    表  2  响应面优化试验结果

    Table  2.   Response surface optimization test results

    实验号ABCDSDF得率(%)
    1000013.067
    2−100110.951
    300−1−111.755
    4000013.127
    510−1012.085
    6011012.196
    7110011.576
    8000012.944
    9000013.163
    100−10−111.658
    11001111.373
    12001−112.234
    1300−1112.088
    140−10111.804
    15010111.574
    16−10−1010.982
    17−110011.511
    18100111.791
    1901−1012.083
    20100−111.216
    21000013.002
    22−100−112.193
    23010−112.271
    24−101012.053
    250−1−1011.35
    261−10010.911
    27−1−10011.44
    280−11010.913
    29101010.569
    下载: 导出CSV

    表  3  响应面优化结果方差分析

    Table  3.   Analysis of variance for response surface optimization results

    方差来源平方和自由度方差FP显著性
    回归模型14.03141.0032.64<0.0001**
    A0.08010.0802.620.1280
    B0.8210.8226.680.0001**
    C0.08410.0842.740.1200
    D0.2510.258.280.0122*
    AB0.08810.0882.870.1122
    AC1.6711.6754.51<0.0001**
    AD0.8310.8326.890.0001**
    BC0.07610.0762.460.1388
    BD0.1810.185.790.0305*
    CD0.3610.3611.610.0042**
    A26.2016.20202.09<0.0001**
    B23.4313.43111.63<0.0001**
    C22.9812.9897.01<0.0001**
    D21.7811.7858.06<0.0001**
    残差0.43140.031
    失拟项0.40100.0404.980.0679不显著
    纯误差0.03247.991E-003
    R20.9703
    R2Adj0.9405
    合计14.4528
    下载: 导出CSV

    表  4  西梅SDF基本化学组成

    Table  4.   Basic chemical composition of prune SDF

    成分含量(%)
    水分4.26±0.09
    蛋白质2.32±0.18
    粗脂肪0
    灰分2.73±0.09
    可溶性膳食纤维85.91±0.46
    下载: 导出CSV

    表  5  西梅SDF对小鼠排便及粪便含水量的影响

    Table  5.   Effects of prune SDF on defecation and fecal water content in mice

    组别首粒黑便排出
    时间(min)
    6 h内排便
    粒数(粒)
    粪便含水量
    (%)
    空白对照组125.3±14.6∆∆17.4±2.1∆∆33.57±2.28∆∆
    模型对照组251.4±7.2**3.2±1.3**25.43±1.53**
    低剂量组228.1±12.7**5.7±1.1**27.84±1.49*
    中剂量组214.8±15.2**∆9.1±1.7**∆∆28.86±1.38*∆
    高剂量组208.2±13.3**∆∆11.4±1.2*∆∆30.28±2.07*∆
    注:与空白对照组相比,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);与模型对照组相比,表示差异显著(P<0.05),△△表示差异极显著(P<0.01);表7~表8同。
    下载: 导出CSV

    表  6  西梅SDF对小鼠脏器指数的影响

    Table  6.   Effects of prune SDF on viscera index in mice

    组别胸腺(%)肝脏(%)肾脏(%)脾脏(%)
    空白对照组0.57±0.096.21±0.161.84±0.130.33±0.26
    模型对照组0.59±0.086.14±0.131.83±0.20.34±0.12
    低剂量组0.61±0.036.18±0.361.78±0.260.33±0.14
    中剂量组0.55±0.045.99±0.021.8±0.170.35±0.07
    高剂量组0.61±0.076.11±0.231.94±0.240.34±0.05
    下载: 导出CSV

    表  7  西梅SDF对小鼠胃排空及小肠推进的影响

    Table  7.   Effects of prune SDF on gastric emptying and small intestinal propulsion in mice

    组别小肠长度
    (cm)
    墨汁前沿
    长度(cm)
    小肠推进率
    (%)
    胃排空率
    (%)
    空白对照组51.4±1.342.5±0.8∆∆83.5±2.2∆∆70.11±0.32∆∆
    模型对照组51.3±1.424.6±1.4**47.5±2.6**43.69±0.18**
    低剂量组52.1±0.930.9±1.7**∆60.3±3.1**∆55.08±0.24**∆∆
    中剂量组51.9±1.734.6±0.9**∆∆67.4±2.5**∆∆62.71±0.44**∆∆
    高剂量组51.5±1.538.7±1.6*∆∆75.1±3.3*∆∆65.22±0.72**∆∆
    下载: 导出CSV

    表  8  西梅SDF对小鼠胃肠组织切片测量指标的影响

    Table  8.   Effects of prune SDF on the measurement indexes of mouse gastrointestinal tissue slices

    组织测量指标组别
    空白对照组模型对照组低剂量组中剂量组高剂量组
    黏膜层厚度(μm)589.12±14.29∆∆436.81±19.57**471.04±18.21**507.24±21.42**∆552.32±17.53*∆∆
    肌层厚度(μm)191.69±11.62∆∆35.51±5.61**103.54±14.67**∆∆145.80±10.84**∆∆171.35±15.31∆∆
    小肠绒毛高度(μm)421.19±13.75∆∆242.71±18.57**266.75±7.51**325.30±15.82**∆∆357.40±16.78**∆∆
    绒毛宽度(μm)112.89±5.68∆∆73.18±3.46**78.58±4.98**85.17±6.23**∆92.95±4.12**∆∆
    隐窝深度(μm)185.40±13.14∆∆91.82±5.24**104.03±7.63**112.52±9.26**∆130.65±7.17**∆∆
    肌层厚度(μm)83.37±4.37∆∆25.41±5.68**37.19±3.27**∆48.90±4.56**∆∆73.70±7.71∆∆
    大肠黏膜层厚度(μm)295.60±10.45∆∆181.24±7.87**208.63±6.74**∆258.59±3.68**∆∆271.44±11.16∆∆
    肌层厚度(μm)285.64±17.99∆∆115.40±4.72**146.53±10.38**∆184.7±15.55**∆∆239.75±12.21*∆∆
    下载: 导出CSV
  • [1] 木合塔尔·扎热, 阿卜杜许库尔·牙合甫, 马合木提·阿不来提, 等. 西梅法兰西采前落果相关影响因子研究[J]. 西北农林科技大学学报(自然科学版),2021,49(9):137−143. [MUHTAR Z, ABDUXUKUR Y, MAHMUT A, et al. Factors affecting preharvest fruit drop of C prune (Prunus domestica L. cv. Prune)[J]. Journal of Northwest A& F Univerity (Natural Science Edition),2021,49(9):137−143.
    [2] 张俊秀, 胡桃花, 孙俊宝, 等. 西梅栽培管理研究进展[J]. 果树资源学报,2020,1(2):52−55. [ZHANG J, HU T H, FANG J B, et al. Advances in research on cultivation and management of prunus[J]. Journal of Fruit Resources,2020,1(2):52−55.
    [3] 王艺菡, 王永刚, 王剑瑞, 等. 欧洲李(西梅)的原产地与保护利用[J]. 新疆林业,2021(4):29−31. [WANG Y H, WANG Y G, WANG J R, et al. The origin and protection and utilization of European plum (prune)[J]. Forestry of Xinjiang,2021(4):29−31. doi: 10.3969/j.issn.1005-3522.2021.04.012
    [4] 马科儒. 西梅在新疆及类似生态区域的开发前景[J]. 西北园艺(果树),2005(1):8−9. [MA K R. The development prospect of prunes in Xinjiang and similar ecological regions[J]. Northwest Horticulture,2005(1):8−9.
    [5] KO S H, CHOI S W, YE S K, et al. Comparison of the antioxidant activities of nine different fruits in human plasma[J]. Journal of Medicinal Food,2005,8(1):41−46. doi: 10.1089/jmf.2005.8.41
    [6] CHIU H F, HUANG Y C, LU Y Y, et al. Regulatory/modulatory effect of prune essence concentrate on intestinal function and blood lipids[J]. Pharmaceutical Biology,2017,55(1):974−979. doi: 10.1080/13880209.2017.1285323
    [7] SHAHIDI S, SETAREYE S, MAHMOODI M. Effect of Prunus domestica L. (mirabelle) on learning and memory in mice[J]. Ancient Science of Life,2013,32(2):139−143.
    [8] SMITH B J, BU S Y, WANG Y, et al. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat[J]. Bone,2014,58:151−159. doi: 10.1016/j.bone.2013.10.005
    [9] SCHIANO D V M, PASQUALI A, CIPOLAT M T, et al. Sacral nerve stimulation in slow-transit constipation: Effectiveness at 5-year follow-up[J]. International Journal of Colorectal Disease,2019,34(9):1529−1540. doi: 10.1007/s00384-019-03351-w
    [10] SCHUBERT C M, ROGERS N L, REMSBERG K E, et al. Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: The Fels lon-gitudinal study[J]. International Journal of Obesity,2006,30(2):251−260. doi: 10.1038/sj.ijo.0803129
    [11] STACEWICZ-SAPUNTZKIS M, BOWEN P E, HUSSAIN E A, et al. Chemical composition and potential health effects of prunes: A functional food?[J]. Critical Reviews in Food Science and Nutrition,2001,41(4):251−286. doi: 10.1080/20014091091814
    [12] ISLAMS M S, SAKAGUCHI E, KASHIMA N, et al. Effect of sugar alcohols on gut function and body composition in normal and cecectomized rats[J]. Experimental Animals,2004,53(4):361−371. doi: 10.1538/expanim.53.361
    [13] ATTALURI A, DONAHOE R, VALESTIN J, et al. Randomised clinical trial: Dried plums (prunes) vs. Psyllium for constipation[J]. Alimentary Pharmacology & Therapeutics,2011,33(7):822−828.
    [14] CHESKIN L J, MITOLA A H, RIDORA M, et al. A naturalistic, controlled, crossover trial of plum juice versus psyllium versus control for improving bowel function[J]. Internet Journal of Nutrition Wellness,2009,7(2):1−11.
    [15] PIIRAINEN L, PEUHKURI K, BACKSTROM K, et al. Prune juice has a mild laxative effect in adults with certain gas-trointestinal symptoms[J]. Nutrition Research,2007,27(8):511−513. doi: 10.1016/j.nutres.2007.06.008
    [16] MATEOS-APARICIO I, MATEOS-PEINADO C, RUPÉREZ P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean[J]. Innovative Food Science & Emerging Technologies,2010,11(3):445−450.
    [17] BELMIRO R H, OLIVEIRA L, GERALDI M V, et al. Modification of coffee coproducts by-products by dynamic high pressure, acetylation and hydrolysis by cellulase: A potential functional and sustainable food ingredient[J]. Innovative Food Science & Emerging Technologies,2021,68(6):102608.
    [18] 王文欣. 双孢菇可溶性膳食纤维的提取及其在曲奇中的应用[D]. 上海: 上海应用技术大学, 2018

    WANG W X. Extraction of soluble dietary fiber from Agaricus bisporus and its application in cookies[D]. Shanghai: Shanghai Institute of Technology, 2018.
    [19] 陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [CHEN X J, WU X F, JIANG S T, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi: 10.7506/spkx1002-6630-201506004
    [20] 切吉卓玛, 李军乔, 李积雲. 藏药蕨麻可溶性膳食纤维酶法提取工艺优化[J]. 食品工业,2020,41(1):42−46. [QIE J Z M, LI J Q, LI J Y. Optimization of enzymatic extraction for preparing soluble dietary fiber from Tibetan medicinal Potentilla anserina[J]. The Food Industry,2020,41(1):42−46.
    [21] 赵明慧, 吕春茂, 孟宪军, 等. 苹果渣水溶性膳食纤维提取及其对自由基的清除作用[J]. 食品科学,2013,34(22):75−80. [ZHAO M H, LÜ C M, MENG X J, et al. Extraction of soluble dietary fiber from apple pomace and its scavenging capacity against free radicals[J]. Food Science,2013,34(22):75−80.
    [22] 李雄. 咖啡果皮水溶性膳食纤维的制备及特性研究[D]. 海口: 海南大学, 2018

    LI X. Preparation and characteristics of water-soluble dietary fiber from coffee peel[J]. Haikou: Hainan University, 2018.
    [23] 王在贵, 张莉, 张宏福, 等. 纤维素酶的酶学性质研究[J]. 中国饲料,2006(1):12−14,17. [WANG Z G, ZHANG L, ZHANG H F, et al. Study on the enzymatic properties of cellulase[J]. China Feed,2006(1):12−14,17. doi: 10.3969/j.issn.1004-3314.2006.01.007
    [24] 蔡沙, 何建军, 施建斌, 等. 葛渣可溶性膳食纤维酶法制备工艺的研究[J]. 湖北农业科学,2017,56(24):4863−4868, 4874. [CAI S, HE J J, SHI J B, et al. Studies on the enzymatic extraction of soluble dietary fiber from pueraia roots residues[J]. Hubei Agricultural Sciences,2017,56(24):4863−4868, 4874. doi: 10.14088/j.cnki.issn0439-8114.2017.24.052
    [25] HUANG H R, CHEN J J, CHEN Y, et al. Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties[J]. LWT-Food Science and Technology,2021(1):111314.
    [26] 梁文康. 黄秋葵可溶性膳食纤维提取及通便作用研究[D]. 杭州: 浙江大学, 2020

    LIANG W K. Study on the extraction and laxative function of soluble dietary fiber from okra[D]. Hangzhou: Zhejiang University, 2020.
    [27] 刘楠, 孙永, 李月欣, 等. 膳食纤维的理化性质、生理功能及其应用[J]. 食品安全质量检测学报,2015,6(10):3959−3963. [LIU N, SUN Y, LI X Y, et al. Properties, physiological function and application of dietary fiber[J]. Journal of Food Safety and Quality,2015,6(10):3959−3963. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.10.032
    [28] 张想, 李立郎, 杨娟, 等. 发酵刺梨果渣膳食纤维润肠通便功能研究[J]. 食品与发酵科技,2021,57(2):30−34. [ZHANG X, LI L L, YANG J, et al. Study on the moistening and laxative function of dietary fiber from fermented roxburgh rose pomace[J]. Food and Fermentation Sciences & Technology,2021,57(2):30−34.
    [29] LAN X Y, YU H, CHEN Q J, et al. Effect of liquiritin on neuroendocrine-immune network in menopausal rat model[J]. Phytotherapy Research,2020,34(10):2665−2674. doi: 10.1002/ptr.6696
    [30] MA Q, MA Z, WANG W, et al. The effects of enzymatic modifica-tion on the functional ingredient: Dietary fiber extracted from po-tato residue[J]. LWT,2022,153:112511. doi: 10.1016/j.lwt.2021.112511
    [31] 张祥梅, 王桂玲, 芦波, 等. 膳食纤维治疗老年慢性功能性便秘症状、疗效评分观察[J]. 新疆医科大学学报,2009,32(6):721−722. [ZHANG X M, WANG G L, LU B, et al. Dietary fiber function on the treatment of senile chronic constipation symptoms and the effects[J]. Journal of Xinjiang Medical University,2009,32(6):721−722. doi: 10.3969/j.issn.1009-5551.2009.06.019
    [32] 张琪. 基于胃肠全段魔芋葡甘露聚糖改善便秘小鼠通便作用机理[D]. 重庆: 西南大学, 2021

    ZHANG Q. Mechanism of improving the laxative effect on constipated mice in the whole gastrointestinal segment of konjac glucomannan[D]. Chongqing: Southwest University, 2021.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  34
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回