Optimization of Extraction Process of Prune Dietary Fiber and Its Laxative Effect
-
摘要: 目的:探究西梅可溶性膳食纤维(Soluble dietary fiber,SDF)的最优提取工艺及其通便作用。方法:采用酶法提取西梅中的SDF,通过单因素实验和响应面分析优化提取条件,再对西梅SDF进行体内试验,小鼠先灌胃7 d盐酸洛哌丁胺,建立便秘模型,随后分为低、中、高剂量组灌胃西梅SDF 14 d,观察小鼠体重、脏器系数、首粒黑便排出时间、6 h内排便粒数、粪便含水量、小肠推进率、胃排空率及胃肠组织形态学描述等指标。结果:西梅SDF最佳提取条件为:混合酶水浴时间2.9 h,纤维素酶添加量1%,纤维素酶水浴温度41 ℃,纤维素酶水浴时间3.8 h,此时得率为13.238%±0.07%,SDF含量为85.91%±0.46%。灌胃西梅SDF后,对小鼠体重和脏器系数无显著影响(P>0.05),中、高剂量组可以显著缩短排便时间、增加排便粒数、增加粪便含水量、升高小肠推进率和胃排空率(P<0.05),降低了便秘对小鼠胃肠组织的损伤,显著增加胃肠组织的厚度(P<0.05)。结论:西梅SDF对便秘小鼠具有通便作用,能够不同程度的改善便秘对胃肠屏障损伤,并对胃肠屏障起到一定的保护作用。Abstract: Objective: Study the optimal extraction technology and the cathartic mechanism of soluble dietary fibers of prunes. Methods: The enzymatic method was adopted to extract SDF from prunes. Single factor experiment and response surface analysis were performed to optimize extracting conditions, and then in vivo test was conducted with the prune SDF. First of all, 7 d loperamide hydrochloride was offered to mice by intragastric administration, a constipation model was built. Prune SDF 14 d was grouped into low dose, medium dose and high dose, and then offered to the mice by intragastric administration. The mice was observed to record following indexes: The weight of the mice, organ coefficients, first black stool excreting time, the number of stool grains excreting in 6 hours, water content in stool, intestinal propulsive rate, gastric emptying rate and the morphological description of gastrointestinal tissue. Results: The optimal conditions for extracting prune SDF were listed as follows: The bath time of mixed prune was 2.9 h. The additive amount of cellulase was 1%. The bath temperature of cellulase was 41 ℃. The bath time of cellulase was 3.8 h, and the yield was 13.238%±0.07% at the moment, and the SDF content was 85.91%±0.46%. After intragastric administration of prunes, there's no obvious impact made on the weight of mice and organ coefficients (P>0.05). The impact on the medium dose group and the high dose group was obvious: The stool excreting time was reduced. The stool grains and water content in stool were increased. The intestinal propulsive rate and gastric emptying rate were raised (P<0.05). The damage to gastrointestinal tissue of mice due to constipation was reduced. The thickness of gastrointestinal tissue was increased (P<0.05). Conclusion: Prune SDF had a function of relaxing bowels for constipation mice, and also could improve the gastrointestinal barrier injury caused by constipation, which played a protective role on the gastrointestinal barrier.
-
Key words:
- prunes /
- soluble dietary fiber /
- extraction /
- laxative
-
表 1 Box-Behnken试验设计因素水平表
Table 1. Factors and levels of Box-behnken test design
水平 因素 A混合酶水浴
时间(h)B纤维素酶
添加量(%)C纤维素酶水浴
温度(℃)D纤维素酶水浴
时间(h)−1 2.5 0.8 30 3 0 3 1 40 4 1 3.5 1.2 50 5 表 2 响应面优化试验结果
Table 2. Response surface optimization test results
实验号 A B C D SDF得率(%) 1 0 0 0 0 13.067 2 −1 0 0 1 10.951 3 0 0 −1 −1 11.755 4 0 0 0 0 13.127 5 1 0 −1 0 12.085 6 0 1 1 0 12.196 7 1 1 0 0 11.576 8 0 0 0 0 12.944 9 0 0 0 0 13.163 10 0 −1 0 −1 11.658 11 0 0 1 1 11.373 12 0 0 1 −1 12.234 13 0 0 −1 1 12.088 14 0 −1 0 1 11.804 15 0 1 0 1 11.574 16 −1 0 −1 0 10.982 17 −1 1 0 0 11.511 18 1 0 0 1 11.791 19 0 1 −1 0 12.083 20 1 0 0 −1 11.216 21 0 0 0 0 13.002 22 −1 0 0 −1 12.193 23 0 1 0 −1 12.271 24 −1 0 1 0 12.053 25 0 −1 −1 0 11.35 26 1 −1 0 0 10.911 27 −1 −1 0 0 11.44 28 0 −1 1 0 10.913 29 1 0 1 0 10.569 表 3 响应面优化结果方差分析
Table 3. Analysis of variance for response surface optimization results
方差来源 平方和 自由度 方差 F值 P值 显著性 回归模型 14.03 14 1.00 32.64 <0.0001 ** A 0.080 1 0.080 2.62 0.1280 B 0.82 1 0.82 26.68 0.0001 ** C 0.084 1 0.084 2.74 0.1200 D 0.25 1 0.25 8.28 0.0122 * AB 0.088 1 0.088 2.87 0.1122 AC 1.67 1 1.67 54.51 <0.0001 ** AD 0.83 1 0.83 26.89 0.0001 ** BC 0.076 1 0.076 2.46 0.1388 BD 0.18 1 0.18 5.79 0.0305 * CD 0.36 1 0.36 11.61 0.0042 ** A2 6.20 1 6.20 202.09 <0.0001 ** B2 3.43 1 3.43 111.63 <0.0001 ** C2 2.98 1 2.98 97.01 <0.0001 ** D2 1.78 1 1.78 58.06 <0.0001 ** 残差 0.43 14 0.031 失拟项 0.40 10 0.040 4.98 0.0679 不显著 纯误差 0.032 4 7.991E-003 R2 0.9703 R2Adj 0.9405 合计 14.45 28 表 4 西梅SDF基本化学组成
Table 4. Basic chemical composition of prune SDF
成分 含量(%) 水分 4.26±0.09 蛋白质 2.32±0.18 粗脂肪 0 灰分 2.73±0.09 可溶性膳食纤维 85.91±0.46 表 5 西梅SDF对小鼠排便及粪便含水量的影响
Table 5. Effects of prune SDF on defecation and fecal water content in mice
组别 首粒黑便排出
时间(min)6 h内排便
粒数(粒)粪便含水量
(%)空白对照组 125.3±14.6∆∆ 17.4±2.1∆∆ 33.57±2.28∆∆ 模型对照组 251.4±7.2** 3.2±1.3** 25.43±1.53** 低剂量组 228.1±12.7** 5.7±1.1** 27.84±1.49* 中剂量组 214.8±15.2**∆ 9.1±1.7**∆∆ 28.86±1.38*∆ 高剂量组 208.2±13.3**∆∆ 11.4±1.2*∆∆ 30.28±2.07*∆ 注:与空白对照组相比,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);与模型对照组相比,△表示差异显著(P<0.05),△△表示差异极显著(P<0.01);表7~表8同。 表 6 西梅SDF对小鼠脏器指数的影响
Table 6. Effects of prune SDF on viscera index in mice
组别 胸腺(%) 肝脏(%) 肾脏(%) 脾脏(%) 空白对照组 0.57±0.09 6.21±0.16 1.84±0.13 0.33±0.26 模型对照组 0.59±0.08 6.14±0.13 1.83±0.2 0.34±0.12 低剂量组 0.61±0.03 6.18±0.36 1.78±0.26 0.33±0.14 中剂量组 0.55±0.04 5.99±0.02 1.8±0.17 0.35±0.07 高剂量组 0.61±0.07 6.11±0.23 1.94±0.24 0.34±0.05 表 7 西梅SDF对小鼠胃排空及小肠推进的影响
Table 7. Effects of prune SDF on gastric emptying and small intestinal propulsion in mice
组别 小肠长度
(cm)墨汁前沿
长度(cm)小肠推进率
(%)胃排空率
(%)空白对照组 51.4±1.3 42.5±0.8∆∆ 83.5±2.2∆∆ 70.11±0.32∆∆ 模型对照组 51.3±1.4 24.6±1.4** 47.5±2.6** 43.69±0.18** 低剂量组 52.1±0.9 30.9±1.7**∆ 60.3±3.1**∆ 55.08±0.24**∆∆ 中剂量组 51.9±1.7 34.6±0.9**∆∆ 67.4±2.5**∆∆ 62.71±0.44**∆∆ 高剂量组 51.5±1.5 38.7±1.6*∆∆ 75.1±3.3*∆∆ 65.22±0.72**∆∆ 表 8 西梅SDF对小鼠胃肠组织切片测量指标的影响
Table 8. Effects of prune SDF on the measurement indexes of mouse gastrointestinal tissue slices
组织 测量指标 组别 空白对照组 模型对照组 低剂量组 中剂量组 高剂量组 胃 黏膜层厚度(μm) 589.12±14.29∆∆ 436.81±19.57** 471.04±18.21** 507.24±21.42**∆ 552.32±17.53*∆∆ 肌层厚度(μm) 191.69±11.62∆∆ 35.51±5.61** 103.54±14.67**∆∆ 145.80±10.84**∆∆ 171.35±15.31∆∆ 小肠 绒毛高度(μm) 421.19±13.75∆∆ 242.71±18.57** 266.75±7.51** 325.30±15.82**∆∆ 357.40±16.78**∆∆ 绒毛宽度(μm) 112.89±5.68∆∆ 73.18±3.46** 78.58±4.98** 85.17±6.23**∆ 92.95±4.12**∆∆ 隐窝深度(μm) 185.40±13.14∆∆ 91.82±5.24** 104.03±7.63** 112.52±9.26**∆ 130.65±7.17**∆∆ 肌层厚度(μm) 83.37±4.37∆∆ 25.41±5.68** 37.19±3.27**∆ 48.90±4.56**∆∆ 73.70±7.71∆∆ 大肠 黏膜层厚度(μm) 295.60±10.45∆∆ 181.24±7.87** 208.63±6.74**∆ 258.59±3.68**∆∆ 271.44±11.16∆∆ 肌层厚度(μm) 285.64±17.99∆∆ 115.40±4.72** 146.53±10.38**∆ 184.7±15.55**∆∆ 239.75±12.21*∆∆ -
[1] 木合塔尔·扎热, 阿卜杜许库尔·牙合甫, 马合木提·阿不来提, 等. 西梅法兰西采前落果相关影响因子研究[J]. 西北农林科技大学学报(自然科学版),2021,49(9):137−143. [MUHTAR Z, ABDUXUKUR Y, MAHMUT A, et al. Factors affecting preharvest fruit drop of C prune (Prunus domestica L. cv. Prune)[J]. Journal of Northwest A& F Univerity (Natural Science Edition),2021,49(9):137−143. [2] 张俊秀, 胡桃花, 孙俊宝, 等. 西梅栽培管理研究进展[J]. 果树资源学报,2020,1(2):52−55. [ZHANG J, HU T H, FANG J B, et al. Advances in research on cultivation and management of prunus[J]. Journal of Fruit Resources,2020,1(2):52−55. [3] 王艺菡, 王永刚, 王剑瑞, 等. 欧洲李(西梅)的原产地与保护利用[J]. 新疆林业,2021(4):29−31. [WANG Y H, WANG Y G, WANG J R, et al. The origin and protection and utilization of European plum (prune)[J]. Forestry of Xinjiang,2021(4):29−31. doi: 10.3969/j.issn.1005-3522.2021.04.012 [4] 马科儒. 西梅在新疆及类似生态区域的开发前景[J]. 西北园艺(果树),2005(1):8−9. [MA K R. The development prospect of prunes in Xinjiang and similar ecological regions[J]. Northwest Horticulture,2005(1):8−9. [5] KO S H, CHOI S W, YE S K, et al. Comparison of the antioxidant activities of nine different fruits in human plasma[J]. Journal of Medicinal Food,2005,8(1):41−46. doi: 10.1089/jmf.2005.8.41 [6] CHIU H F, HUANG Y C, LU Y Y, et al. Regulatory/modulatory effect of prune essence concentrate on intestinal function and blood lipids[J]. Pharmaceutical Biology,2017,55(1):974−979. doi: 10.1080/13880209.2017.1285323 [7] SHAHIDI S, SETAREYE S, MAHMOODI M. Effect of Prunus domestica L. (mirabelle) on learning and memory in mice[J]. Ancient Science of Life,2013,32(2):139−143. [8] SMITH B J, BU S Y, WANG Y, et al. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat[J]. Bone,2014,58:151−159. doi: 10.1016/j.bone.2013.10.005 [9] SCHIANO D V M, PASQUALI A, CIPOLAT M T, et al. Sacral nerve stimulation in slow-transit constipation: Effectiveness at 5-year follow-up[J]. International Journal of Colorectal Disease,2019,34(9):1529−1540. doi: 10.1007/s00384-019-03351-w [10] SCHUBERT C M, ROGERS N L, REMSBERG K E, et al. Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: The Fels lon-gitudinal study[J]. International Journal of Obesity,2006,30(2):251−260. doi: 10.1038/sj.ijo.0803129 [11] STACEWICZ-SAPUNTZKIS M, BOWEN P E, HUSSAIN E A, et al. Chemical composition and potential health effects of prunes: A functional food?[J]. Critical Reviews in Food Science and Nutrition,2001,41(4):251−286. doi: 10.1080/20014091091814 [12] ISLAMS M S, SAKAGUCHI E, KASHIMA N, et al. Effect of sugar alcohols on gut function and body composition in normal and cecectomized rats[J]. Experimental Animals,2004,53(4):361−371. doi: 10.1538/expanim.53.361 [13] ATTALURI A, DONAHOE R, VALESTIN J, et al. Randomised clinical trial: Dried plums (prunes) vs. Psyllium for constipation[J]. Alimentary Pharmacology & Therapeutics,2011,33(7):822−828. [14] CHESKIN L J, MITOLA A H, RIDORA M, et al. A naturalistic, controlled, crossover trial of plum juice versus psyllium versus control for improving bowel function[J]. Internet Journal of Nutrition Wellness,2009,7(2):1−11. [15] PIIRAINEN L, PEUHKURI K, BACKSTROM K, et al. Prune juice has a mild laxative effect in adults with certain gas-trointestinal symptoms[J]. Nutrition Research,2007,27(8):511−513. doi: 10.1016/j.nutres.2007.06.008 [16] MATEOS-APARICIO I, MATEOS-PEINADO C, RUPÉREZ P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean[J]. Innovative Food Science & Emerging Technologies,2010,11(3):445−450. [17] BELMIRO R H, OLIVEIRA L, GERALDI M V, et al. Modification of coffee coproducts by-products by dynamic high pressure, acetylation and hydrolysis by cellulase: A potential functional and sustainable food ingredient[J]. Innovative Food Science & Emerging Technologies,2021,68(6):102608. [18] 王文欣. 双孢菇可溶性膳食纤维的提取及其在曲奇中的应用[D]. 上海: 上海应用技术大学, 2018WANG W X. Extraction of soluble dietary fiber from Agaricus bisporus and its application in cookies[D]. Shanghai: Shanghai Institute of Technology, 2018. [19] 陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [CHEN X J, WU X F, JIANG S T, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi: 10.7506/spkx1002-6630-201506004 [20] 切吉卓玛, 李军乔, 李积雲. 藏药蕨麻可溶性膳食纤维酶法提取工艺优化[J]. 食品工业,2020,41(1):42−46. [QIE J Z M, LI J Q, LI J Y. Optimization of enzymatic extraction for preparing soluble dietary fiber from Tibetan medicinal Potentilla anserina[J]. The Food Industry,2020,41(1):42−46. [21] 赵明慧, 吕春茂, 孟宪军, 等. 苹果渣水溶性膳食纤维提取及其对自由基的清除作用[J]. 食品科学,2013,34(22):75−80. [ZHAO M H, LÜ C M, MENG X J, et al. Extraction of soluble dietary fiber from apple pomace and its scavenging capacity against free radicals[J]. Food Science,2013,34(22):75−80. [22] 李雄. 咖啡果皮水溶性膳食纤维的制备及特性研究[D]. 海口: 海南大学, 2018LI X. Preparation and characteristics of water-soluble dietary fiber from coffee peel[J]. Haikou: Hainan University, 2018. [23] 王在贵, 张莉, 张宏福, 等. 纤维素酶的酶学性质研究[J]. 中国饲料,2006(1):12−14,17. [WANG Z G, ZHANG L, ZHANG H F, et al. Study on the enzymatic properties of cellulase[J]. China Feed,2006(1):12−14,17. doi: 10.3969/j.issn.1004-3314.2006.01.007 [24] 蔡沙, 何建军, 施建斌, 等. 葛渣可溶性膳食纤维酶法制备工艺的研究[J]. 湖北农业科学,2017,56(24):4863−4868, 4874. [CAI S, HE J J, SHI J B, et al. Studies on the enzymatic extraction of soluble dietary fiber from pueraia roots residues[J]. Hubei Agricultural Sciences,2017,56(24):4863−4868, 4874. doi: 10.14088/j.cnki.issn0439-8114.2017.24.052 [25] HUANG H R, CHEN J J, CHEN Y, et al. Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties[J]. LWT-Food Science and Technology,2021(1):111314. [26] 梁文康. 黄秋葵可溶性膳食纤维提取及通便作用研究[D]. 杭州: 浙江大学, 2020LIANG W K. Study on the extraction and laxative function of soluble dietary fiber from okra[D]. Hangzhou: Zhejiang University, 2020. [27] 刘楠, 孙永, 李月欣, 等. 膳食纤维的理化性质、生理功能及其应用[J]. 食品安全质量检测学报,2015,6(10):3959−3963. [LIU N, SUN Y, LI X Y, et al. Properties, physiological function and application of dietary fiber[J]. Journal of Food Safety and Quality,2015,6(10):3959−3963. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.10.032 [28] 张想, 李立郎, 杨娟, 等. 发酵刺梨果渣膳食纤维润肠通便功能研究[J]. 食品与发酵科技,2021,57(2):30−34. [ZHANG X, LI L L, YANG J, et al. Study on the moistening and laxative function of dietary fiber from fermented roxburgh rose pomace[J]. Food and Fermentation Sciences & Technology,2021,57(2):30−34. [29] LAN X Y, YU H, CHEN Q J, et al. Effect of liquiritin on neuroendocrine-immune network in menopausal rat model[J]. Phytotherapy Research,2020,34(10):2665−2674. doi: 10.1002/ptr.6696 [30] MA Q, MA Z, WANG W, et al. The effects of enzymatic modifica-tion on the functional ingredient: Dietary fiber extracted from po-tato residue[J]. LWT,2022,153:112511. doi: 10.1016/j.lwt.2021.112511 [31] 张祥梅, 王桂玲, 芦波, 等. 膳食纤维治疗老年慢性功能性便秘症状、疗效评分观察[J]. 新疆医科大学学报,2009,32(6):721−722. [ZHANG X M, WANG G L, LU B, et al. Dietary fiber function on the treatment of senile chronic constipation symptoms and the effects[J]. Journal of Xinjiang Medical University,2009,32(6):721−722. doi: 10.3969/j.issn.1009-5551.2009.06.019 [32] 张琪. 基于胃肠全段魔芋葡甘露聚糖改善便秘小鼠通便作用机理[D]. 重庆: 西南大学, 2021ZHANG Q. Mechanism of improving the laxative effect on constipated mice in the whole gastrointestinal segment of konjac glucomannan[D]. Chongqing: Southwest University, 2021.