Protective Effect of Phycocyanin on Cyclophosphamide-induced Immunocompromised Mice
-
摘要: 目的:研究藻蓝蛋白对环磷酰胺诱导小鼠肝肾组织损伤的保护作用,为评价肝肾治疗药物提供新的研究思路。方法:雌性BALB/c小鼠随机分为空白组、模型组、阳性对照组以及藻蓝蛋白低、中、高剂量组。采用腹腔注射环磷酰胺后建立小鼠肝肾损伤模型,然后空白组和模型组小鼠灌胃生理盐水,样品组给予不同剂量藻蓝蛋白溶液(50、100、200 mg/kg),阳性对照组灌胃盐酸左旋咪唑(40 mg/kg),灌胃时间5 d。采用试剂盒法分别测定各组小鼠血清中的白细胞介素-2(IL-2)、肿瘤因子-α(TNF-α)和免疫球蛋白(IgG)、超氧化物歧化酶(SOD)、丙二醛(MDA)水平;肝组织的超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、天冬氨酸氨基转移酶(AST)、谷丙转氨酶(ALT);及肾组织的超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、尿酸(UA)、尿素氮(BUN)水平并观察小鼠肝脏、肾脏组织形态学变化。结果:与模型组对比,藻蓝蛋白剂量组小鼠血清中的IL-2、TNF-α、MDA水平极显著下降(P<0.01);藻蓝蛋白高剂量组可明显降低血清中的IgG水平(P<0.05)并提高血清中的SOD水平(P<0.05);同时可降低由环磷酰胺引起的小鼠血清中MDA含量升高的情况(P<0.01),升高SOD活性(P<0.05);此外,藻蓝蛋白剂量组小鼠的肝组织GSH-Px水平极显著高于模型组(P<0.01),而MDA、ALT、AST水平均极显著低于模型组小鼠(P<0.01);相较于肝组织,藻蓝蛋白剂量组小鼠肾组织的MDA水平极显著低于模型组(P<0.01),仅低剂量藻蓝蛋白组小鼠肾组织的BUN水平极显著低于模型组(P<0.01),高剂量藻蓝蛋白组小鼠肾组织的UA水平极显著低于模型组(P<0.01)。结论:综合各项指标结果,藻蓝蛋白对环磷酰胺导致的小鼠肝肾损伤具有明显改善作用。Abstract: Objective: To investigate the protective effect of phycocyanin on hepatorenal co-damage in mice caused by cyclophosphamide, and to provide new research ideas for evaluating liver and kidney therapy drugs. Methods: Female BALB/c mice were randomly divided into blank group, model group, positive control group, high dose group, middle dose group and low dose group. The hepatic and kindy injury model of mice were established by intraperitoneal injection of cyclophosphamide (50, 100, 200 mg/kg), then the mice of blank group and model group were fed with normal saline, mice of positive control group were fed levimidazole hydrochloride (40 mg/kg) and the mice of dosage groups were fed different dosage of instant power of phycocyanin. Interleukin-2 (IL-2), tumournecrosis factor-α (TNF-α), immunoglobulin (IgG), superoxide dismutase (SOD), malondialdehyde (MDA) of serum in mice, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) level of liver tissue and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), uric acid (UA), urea nitrogenin (BUN) level of kindey tissue in each group mice were determined by reagent kit method. Experimental results showed that compared with the model group, the serum levels of IL-2, TNF-α and MDA in mice in the phycocyanin dose group decreased significantly (P<0.01). The high-dose group of phycocyanin significantly reduced serum IgG levels (P<0.05) and increased serum SOD levels (P<0.05). At the same time, it could reduce the elevated content of MDA in mice caused by cyclophosphamide (P<0.01) and increase SOD activity (P<0.05). In addition, the GSH-Px levels of liver tissue in mice in the phycocyanin dose group were significantly higher than those in the model group (P<0.01), while the levels of MDA, ALT, and AST were significantly lower than those in the model group (P<0.01). Compared with liver tissue, the MDA level of mouse kidney tissue in the phycocyanin dose group was significantly lower than that in the model group (P<0.01), the BUN level of mouse kidney tissue in the low-dose phycocyanin group alone was significantly lower than that in the model group (P<0.01), and the UA level of mouse kidney tissue in the high-dose phycocyanin group was significantly lower than that in the model group (P<0.01). So the powder of phycocyanin had protective effect on cyclophosphamide-induced hepatic and kindy injury in mice.
-
Key words:
- phycocyanin /
- cyclophosphamide /
- liver and kidney injury /
- protection
-
表 1 PC对CTX致免疫低下小鼠免疫脏器指数的影响(n=6)
Table 1. Effect of PC on immune organ index of CTX induced immunosuppressive mice (n=6)
组别 解剖前体重(g) 胸腺指数(%) 脾脏指数(%) 肝脏指数(%) 肾脏指数(%) CK 20.0667±0.3559 0.0026±0.0002 0.0035±0.0001 0.0482±0.0009 0.0138±0.0004 M 17.8167±0.8495## 0.0025±0.0003 0.0035±0.0001 0.0473±0.0014 0.0135±0.0005 LH 20.4000±0.3847 0.0035±0.0007** 0.0044±0.0003** 0.0457±0.0013 0.0138±0.0003 ZL 20.4167±1.000 0.0038±0.0002** 0.0049±0.0004** 0.0449±0.0009 0.0139±0.0005 ZM 20.4000±1.0564 0.0037±0.0006** 0.0050±0.0003** 0.0458±0.0015 0.0136±0.0008 ZH 20.0500±0.7450 0.0039±0.0005** 0.0052±0.0005** 0.0455±0.0015 0.0135±0.0004 注:与空白组CK相比,##P<0.01;与模型组M相比,**P<0.01。 -
[1] GORGICH M, PASSOSS M, MATA T, et al. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption[J]. Energy Reports, 2020, 6(Supplement 8): 312-318. [2] 陶冉, 位正鹏, 崔蓉, 等. 藻类色素蛋白的资源开发和应用研究[J]. 食品工业科技,2010,31(4):377−380. [TAO R, WEI Z P, CUI R, et al. Resource development and application of algal pigment protein[J]. Science and Technology of Food Industry,2010,31(4):377−380. doi: 10.13386/j.issn1002-0306.2010.04.015 [3] HAMDAN N, JWAD B, JASIM S. Synergistic anticancer effects of phycocyanin and Citrullus colocynthis extract against WiDr, HCT-15 and HCT-116 colon cancer cell lines[J]. Gene Reports,2021,22:100972. doi: 10.1016/j.genrep.2020.100972 [4] 韩敏敏, 唐振洲, 米顺利, 等. 藻蓝蛋白抗肿瘤活性及作用机制研究进展[J]. 广西中医药大学学报,2021,24(4):81−85. [HAN M M, TANG Z Z, MI S L, et al. Research progress on antitumor activity and mechanism of action of phycocyanin[J]. Journal of Guangxi University of Chinese Medicine,2021,24(4):81−85. doi: 10.3969/j.issn.2095-4441.2021.04.022 [5] 许丹丹, 徐雅琴, 隽行, 等. 富硒菊芋多糖的提取及其体外抗氧化活性研究[J]. 中国农学通报,2021,37(30):121−127. [XU D D, XU Y Q, JUN X, et al. Extraction of selenium-rich Jerusalem artichoke polysaccharides and their antioxidant activity in vitro[J]. Chinese Agricultural Science Bulletin,2021,37(30):121−127. doi: 10.11924/j.issn.1000-6850.casb2020-0842 [6] FERNANDES E, FIGUEIRA F, LETTNIN A, et al. C-Phycocyanin: Cellular targets, mechanisms of action and multi drug resistance in cancer[J]. Pharmacological Reports,2018,70(1):75−80. doi: 10.1016/j.pharep.2017.07.018 [7] JIANG L Q, WANG Y J, YIN Q F, et al. Phycocyanin: A potential drug for cancer treatment[J]. Journal of Cancer,2017,8(17):3416−3429. doi: 10.7150/jca.21058 [8] HOI S, WINAYU B, HSUEH H, et al. Light factors and nitrogen availability to enhance biomass and C-phycocyanin productivity of Thermosynechococcus sp. CL-1[J]. Biochemical Engineering Journal,2021,167:107899. doi: 10.1016/j.bej.2020.107899 [9] 王小丹, 杜军, 刘克, 等. 黄伞脂溶性成分对环磷酰胺致小鼠肝损伤的保护作用[J]. 中成药,2013,35(9):2013−2016. [WANG X D, DU J, LIU K, et al. Protective effect of fat-soluble components of yellow umbrella on cyclophosphamide-induced liver injury in mice[J]. Chinese Traditional Patent Medicine,2013,35(9):2013−2016. doi: 10.3969/j.issn.1001-1528.2013.09.045 [10] 潘模英, 倪秀熊, 姚琪, 等. 紫杉醇和环磷酰胺致肝损伤程度的对比实验研究[J]. 黑龙江医药科学,2004,27(3):17−18. [PAN M Y, NI X X, YAO Q, et al. Comparative experimental study on the degree of liver damage caused by paclitaxel and cyclophosphamide[J]. Heilongjiang Medicine and Pharmacy,2004,27(3):17−18. doi: 10.3969/j.issn.1008-0104.2004.03.009 [11] 邵颖, 陈安徽, 张明, 等. 蛹虫草速溶粉对环磷酰胺致小鼠肝损伤的保护作用[J]. 食品工业科技,2018,39(9):290−294,305. [SHAO Y, CHEN X J, ZHANG M, et al. Protective effect of instant powder of Cordyceps militaris on liver damage caused by cyclophosphamide[J]. Science and Technology of Food Industry,2018,39(9):290−294,305. doi: 10.13386/j.issn1002-0306.2018.09.051 [12] 吴军, 赵凤鸣, 王明艳, 等. 四君子汤、六味地黄汤对环磷酰胺致小鼠免疫抑制的拮抗作用实验研究[J]. 四川中医,2007,25(10):12−14. [WU J, ZHAO F M, WANG M Y, et al. Experimental study on the antagonistic effect of Four Junzi Soup and Liuwei Dihuang Soup on immunosuppression in mice cyclophosphamide[J]. Journal of Sichuan of Traditional Chinese Medicine,2007,25(10):12−14. doi: 10.3969/j.issn.1000-3649.2007.10.007 [13] WANG Y L, NI W, JIN X, et al. Vitexin-2-O-rhamnoside improves immunosuppression, oxidative stress, and phosphorylation of PI3K/Akt signal pathway in cyclophosphamide treated mice[J]. European Journal of Pharmacology,2022,925:174999. doi: 10.1016/j.ejphar.2022.174999 [14] 陈奇. 中药药理研究方法学[M]. 北京: 人民卫生出版社, 1993: 57CHEN Q. Research methodology of traditional Chinese medicine pharmacology[M]. Beijing: People's Medical Publishing House (PMPH), 1993: 57. [15] SANTIAGO-RABER M L, LAPORTE C, REIUINGER L, et al. Genetic basis of murine lupus[J]. Antoimmun Rev,2004,3:33. doi: 10.1016/S1568-9972(03)00062-4 [16] QU W M, MIYAZAKI T, TERADA M, et al. Genetic dissection of vasculitis in MRL/lpr lupus mice: A novel susceptibility locus invoIving the CD7+callele[J]. Eur J Immunol,2000,30:2027. doi: 10.1002/1521-4141(200007)30:7<2027::AID-IMMU2027>3.0.CO;2-S [17] 张继东, 贾宁, 刘楷东, 等. 环磷酰胺的肝细胞损伤作用机制研究[J]. 中国药物与临床,2016,16(11):1664−1667. [ZHANG J D, JIA N, LIU K D, et al. Study on the mechanism of hepatocyte injury of cyclophosphamide[J]. Chinese Remedies & Clinics,2016,16(11):1664−1667. [18] 戚梦, 刘城移, 郭佩玲, 等. 蛹虫草MF27高抗氧化活性提取物筛选及保肝作用研究[J]. 菌物学报,2019,38(2):254−263. [QI M, LIU C Q, GUO P L, et al. Screening and hepatoprotective effect of high antioxidant activity extract of Cordyceps militaris MF27[J]. Mycosystema,2019,38(2):254−263. doi: 10.13346/j.mycosystema.180181 [19] 史鑫锐, 陈滢锴, 陈中婷, 等. 鸡血藤总黄酮对环磷酰胺所致小鼠肝损伤的保护作用[J]. 畜牧与饲料科学,2022,43(4):8−13. [SHI X R, CHEN Y K, CHEN Z T, et al. Protective effect of vine total flavonoids on liver damage in mice caused by cyclophosphamide[J]. Animal Husbandry and Feed Science,2022,43(4):8−13. doi: 10.12160/j.issn.1672-5190.2022.04.002 [20] 何丹. 戊二醛聚合血红蛋白对环磷酰胺所致骨髓抑制及肝肾损伤小鼠的保护作用[D]. 西安: 西北大学, 2021HE D. Protective effect of glutaraldehyde polymerized hemoglobin on cyclophosphamide induced bone marrow suppression and liver and kidney injury in mice[D]. Xi'an: Northwestern University, 2021. [21] 江益平, 马方励, 周联, 等. 香菇多糖对免疫抑制小鼠肠道派氏结T细胞的影响[J]. 中国药理学通报,2011,27(9):1236−1239. [JIANG Y P, MA F L, ZHOU L, et al. Effect of shiitake polysaccharides on intestinal Pin T cells in immunosuppressed mice[J]. Chinese Pharmacological Bulletin,2011,27(9):1236−1239. doi: 10.3969/j.issn.1001-1978.2011.09.013 [22] 杨善岚, 吴磊, 涂嘉欣, 等. 自由基致衰老的研究进展[J]. 中华疾病控制杂志,2022,26(5):589−594. [YANG S L, WU L, TU J X, et al. Research progress of free radical induced senescence[J]. Chinese Journal of Disease Control,2022,26(5):589−594. [23] LIU Z, XIA B, SARIC J, et al. Effects of vancomycin and ciprofloxacin on the NMRI mouse metabolism[J]. Journal of Proteome Research,2018,17(10):3565−3573. doi: 10.1021/acs.jproteome.8b00583 [24] 张林丽, 王艳, 刘莉. 细胞因子与炎症免疫疾病的研究进展[J]. 药学与临床研究,2020,28(3):202−205. [ZHANG L L, WANG Y, LIU L. Research progress of cytokines and inflammatory immune diseases[J]. Pharmaceutical and Clinical Research,2020,28(3):202−205. doi: 10.13664/j.cnki.pcr.2020.03.011 [25] YUTAKA K, RIE Y, MIKA W, et al. An international validation study of the IL-2 Luc assay for evaluating the potential immunotoxic effects of chemicals on T cells and a proposal for reference data for immunotoxic chemicals[J]. Toxicology in Vitro,2020,66:104832. doi: 10.1016/j.tiv.2020.104832 [26] 陈云, 李周勇, 史玉东, 等. 嗜热链球菌MN-BM-A01对小鼠免疫的调节作用[J]. 中国食品学报,2020,20(7):53−58. [CHEN Y, LI C Y, SHI Y D, et al. Regulatory effect of Streptococcus thermophilus MN-BM-A01 on mouse immunity[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):53−58. [27] 李兰, 钟达源, 杨开锋, 等. 益气养荣复经方对环磷酰胺诱导的卵巢早衰小鼠的治疗作用及保护机制[J]. 中医药信息,2021,38(11):47−52. [LI L, ZHONG D Q, YANG K F, et al. Therapeutic effect and protective mechanism of cyclophosphamide-induced ovarian premature aging mice induced by Yiqi Yangrong Meridian[J]. Chinese Journal of Information on Traditional Chinese Medicine,2021,38(11):47−52. doi: 10.19656/j.cnki.1002-2406.20211109 [28] FRIDA B G, CATHARINA H, CAROLINE B, et al. Inflammatory macrophage derived TNFα downregulates estrogen receptor α via FOXO3a inactivation in human breast cancer cells[J]. Experimental Cell Research,2020,390(1):111932. doi: 10.1016/j.yexcr.2020.111932 [29] 范亦菲, 郭琳, 靳文会, 等. 枸杞酸奶体外抗氧化活性和保肝功能研究[J]. 食品与生物技术学报,2022,41(4):25−30. [FAN Y F, GUO L, JIN W H, et al. Antioxidant activity and liver protecting function of Lycium barbarum yoghurt in vitro[J]. Journal of Food Science and Biotechnology,2022,41(4):25−30. doi: 10.3969/j.issn.1673-1689.2022.04.004 [30] SHI X W, HU H H, JI G J, et al. Effects of MTG and GSH on human sperm motility and DNA integrity during vitrification in the presence of trehalose[J]. Advances in Reproductive Sciences,2020,8(1):71−81. doi: 10.4236/arsci.2020.81007 [31] 孙慧, 付千, 戴晨曦, 等. 鞣花酸对马兜铃酸Ⅰ诱导小鼠急性肾损伤的保护作用[J]. 食品科学,2022,43(5):84−90. [SUN H, FU Q, DAI C X, et al. Protective effect of ellagic acid on acute renal injury induced by aristolochic acid Ⅰ in mice[J]. Food Science,2022,43(5):84−90. doi: 10.7506/spkx1002-6630-20210320-253 [32] 左爱仁, 吴莉, 舒青龙. 根皮素对硫代乙酰胺诱导的小鼠急性肝损伤的保护作用[J]. 食品与生物技术学报,2021,40(10):50−55. [ZUO A R, WU L, SHU Q L. Protective effect of phloretin on acute liver injury induced by thioacetamide in mice[J]. Journal of Food Science and Biotechnology,2021,40(10):50−55. doi: 10.3969/j.issn.1673-1689.2021.10.007 [33] 魏颖, 郭颖, 李明亮, 等. 紫苏籽肽抗疲劳功效及其作用机理[J]. 中国食品学报,2021,21(7):157−162. [WEI Y, GUO Y, LI M L, et al. Antifatigue effect and mechanism of perilla seed peptide[J]. Chinese Journal of Food,2021,21(7):157−162. doi: 10.16429/j.1009-7848.2021.07.019 [34] LU H Y, YU N X, QI C Y, et al. Predictive value of serum creatinine, blood urea nitrogen, uric acid, and β2-microglobulin in the evaluation of acute kidney injury after orthotopic liver transplantation[J]. Chinese Medical Journal,2018,131(9):1059−1066. doi: 10.4103/0366-6999.230726 [35] AUZA N G, WILLIAM G D, MICHAEL J M. Diagnosis and treatment of copper toxicosis in ruminant[J]. Journal of the American Veterinary Medical Association,1999,214:1624−1628. [36] SU M, CHEN H, WEI C, et al. Potential protection of vitamin C against liver-lesioned mice[J]. International Immunopharmacology,2014,22:492−497. doi: 10.1016/j.intimp.2014.07.034 [37] 江海涛, 吴雨龙, 王仁雷, 等. 蛹虫草基质多糖对酒精所致小鼠急性肝损伤的保护作用[J]. 食品科学,2014,35(13):223−227. [JIANG H T, WU Y L, WANG R L, et al. Protective effect of cordyceps militaris substrate polysaccharide on acute liver injury induced by alcohol in mice[J]. Food Science,2014,35(13):223−227. doi: 10.7506/spkx1002-6630-201413043 [38] 尼罗帕尔·吐尔逊, 赵芳, 王欢. 血清调节性T细胞、CD34、CD117水平与多发性骨髓瘤患者早期肾损伤的相关性研究[J]. 中国医刊,2022,57(8):900−903. [TURSUN M L P R, ZHAO F, WANG H. Study on the relationship between the levels of serum regulatory T cells, CD34, CD117 and early renal injury in patients with multiple myeloma[J]. Chinese Medical Journal,2022,57(8):900−903. doi: 10.3969/j.issn.1008-1070.2022.08.024 [39] LIU J, ZHANG Q Y, YU L M, et al. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice[J]. World Journal of Gastroenterology,2015,21(18):5465−5472. doi: 10.3748/wjg.v21.i18.5465 [40] FERNANDEZ-ROJAS B, MEDINA-CAMPOS ON, HERNANDEZ-PANDO R, et al. C-phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress[J]. Food & Function,2014,5(3):480−490.