留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双酚类化合物对机体影响的研究进展

兰天 段国珍 刘娜 樊光辉 赵成周 杨仕兵 祁有朝

兰天,段国珍,刘娜,等. 双酚类化合物对机体影响的研究进展[J]. 食品工业科技,2023,44(10):444−453. doi: 10.13386/j.issn1002-0306.2022080072
引用本文: 兰天,段国珍,刘娜,等. 双酚类化合物对机体影响的研究进展[J]. 食品工业科技,2023,44(10):444−453. doi: 10.13386/j.issn1002-0306.2022080072
LAN Tian, DUAN Guozhen, LIU Na, et al. Research Progress on the Effects of Bisphenol Compounds on Human Beings and Animals[J]. Science and Technology of Food Industry, 2023, 44(10): 444−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080072
Citation: LAN Tian, DUAN Guozhen, LIU Na, et al. Research Progress on the Effects of Bisphenol Compounds on Human Beings and Animals[J]. Science and Technology of Food Industry, 2023, 44(10): 444−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080072

双酚类化合物对机体影响的研究进展

doi: 10.13386/j.issn1002-0306.2022080072
基金项目: 青海省科技基础研究计划青年项目(2021-ZJ-962Q);2020年度青海大学青年科研基金项目(2020-QNY-3);县域创新试点县建设专项(2020-0407-NCC-0001)。
详细信息
    作者简介:

    兰天(1998−),女,硕士研究生,研究方向:药理学与毒理学,E-mial:1289495380@qq.com

    通讯作者:

    祁有朝(1990−),男,博士,副教授,研究方向:药理学与毒理学,E-mail:yaolixueyouchao@163.com

  • 中图分类号: TS201.6

Research Progress on the Effects of Bisphenol Compounds on Human Beings and Animals

  • 摘要: 双酚类化合物(Bisphenol compounds,BPs)是合成高分子材料的重要原材料之一。目前,常见的双酚类化合物主要包括双酚A、双酚B、双酚F以及双酚AF等。现如今,双酚类化合物主要应用于塑料制品、食品包装、饮用水添加剂、海鲜等方面。大量的研究发现,双酚类化合物通过物理迁移、化学迁移、生物迁移途径侵入人类和动物体内,甚至在深海哺乳动物体内也检测到了该物质,从而影响了机体的生殖系统、神经系统、消化系统、心血管系统、行为、发育和代谢性疾病的发生发展。因此,双酚类化合物引起了更多的关注。因此,本文主要从BPs的分类、侵入机体的途径以及对机体的影响方面进行了综述,以期对BPs的进一步研究以及安全性和毒理学评价提供参考依据。

     

  • 图  双酚类化合物的结构

    Figure  1.  Structure of BPs

    图  双酚类化合物入侵食品的途径

    Figure  2.  Invasion pathways of BPs into foods

    图  双酚类化合物对机体的作用

    Figure  3.  Effects of BPs on the human beings and animals

    图  BPs信号转导通路

    Figure  4.  Bisphenols signal transduction pathways

    表  1  双酚类化合物的结构与侵入方式

    Table  1.   Structure and invasion pathways of BPs

    名称分子式分子结构侵入方式侵入途径参考文献
    双酚A(BPA)
    Bisphenol A
    C15H16O2 物理迁移
    化学迁移
    生物迁移
    皮肤和粘膜
    消化道
    呼吸道
    [13]
    双酚B(BPB)
    Bisphenol B
    C16H18O2 [1617]
    双酚C(BPC)
    Bisphenol C
    C17H20O2[25]
    双酚E(BPE)
    Bisphenol E
    C14H14O2[26]
    双酚F(BPF)
    Bisphenol F
    C13H12O2[27]
    双酚P(BPP)
    Bisphenol P
    C24H26O2[26]
    双酚S(BPS)
    Bisphenol S
    C12H10O4S[28]
    双酚Z(BPZ)
    Bisphenol Z
    C18H20O2[29]
    双酚AF(BPAF)
    Bisphenol AF
    C15H10F6O2[23]
    双酚AP(BPAP)
    Bisphenol AP
    C20H18O2[30]
    四溴双酚A(TBBPA)
    Tetrabromo bisphenol A
    C15H12Br4O2[31]
    四氯双酚A(TCBPA)
    Tetrachloro bisphenol A
    C15H12Cl4O2[32]
    下载: 导出CSV

    表  2  BPs对生殖系统的影响

    Table  2.   Effects of BPs on the reproductive system

    研究类型(模型)BPs浓度影响参考文献
    体外牛卵母细胞和精子BPA,BPS,BPF0.05 mg/mLBPA处理:活性氧升高,重组人线粒体超氧化物歧化酶-2、
    谷胱甘肽过氧化物酶1、谷胱甘肽过氧化物酶4基因及
    蛋白表达降低;BPF、BPS处理:精子产量减少
    [41]
    体外人类精子BPA0,10−3,10−2,10−1,10,103 nmol/L精子活力、进行性运动和黄体酮诱导的顶体反应显着下降[42]
    体内雄性大鼠BPS0.5,5,50 μg/L精子活力、产量、附睾中精子数量减少;血浆睾酮、
    黄体生成素、卵泡刺激素浓度降低,雌二醇水平升高;
    睾丸中氧化应激水平升高
    [43]
    体内成年雄性小鼠BPA5,50 mg/kg bw/day生殖细胞比例异常、睾丸形态改变、精元干细胞功能特性丧失[44]
    体外小鼠卵母细胞BPA,BPF5,25,50 μg/mL纺锤体缩短,微管附着减少[45]
    体内成年雄性大鼠BPF1,5,25,50 mg/kg/d精子减少,睾丸激素分泌物水平降低[46]
    体内雌性和雄性斑马鱼BPB0.001,0.01,0.1,1 mg/L鱼卵数量减少,孵化率及存活率降低,生殖功能受损[47]
    体内雌性和雄性斑马鱼BPAF0.05,0.25,1 mg/L雄性斑马睾酮水平降低,鱼E2水平升高;雌性斑马鱼睾酮分泌增加[48]
    下载: 导出CSV

    表  3  BPs对胚胎发育的影响

    Table  3.   Effects of BPs on embryonic development

    BPs模型暴露浓度结果参考文献
    BPAP斑马鱼200 μg/L鱼卵孵化率降低、死亡率升高、卵黄囊水肿比例增高、心率降低、出现心脏环化障碍[56]
    BPA热带非洲爪蟾25,50,100 μmol/L发育迟缓、胚孔异常闭合、尾部弯曲、心包水肿、体长缩短[52]
    BPABPSBPAFTMBPF雏鸡胚胎0.03,0.3,3,30 μmol/L抑制体长及体重的增长,躯干四肢及器官发育畸形,胚胎存活率降低[57]
    BPABPSBPAF胚胎干细胞1,10 ng/mL抑制胚胎干细胞分化[58]
    BPA非洲爪蟾1,10,20 μmol/L严重畸形、行为能力受损、组织器官受损、诱导DNA损伤的凋亡[59]
    下载: 导出CSV
  • [1] 刘洪媛, 金静, 郭崔崔, 等. 环境样品中双酚类化合物的固相萃取研究进展[J]. 色谱,2021,39(8):835−844. [LIU H Y, JIN J, GUO C C, et al. Research progress of solid phase extraction of bisphenols in environmental samples[J]. Chromatograph,2021,39(8):835−844.
    [2] 赵斌, 谭学蓉, 付瑜, 等. 基于QuEChERS的超高效液相色谱-串联质谱法快速测定果蔬中双酚类物质[J]. 分析化学,2022,50(5):810−821. [ZHAO B, TAN X R, FU Y, et al. Rapid determination of bisphenols in fruits and vegetables by ultra high-performance liquid chromatography-tandem mass spectrometry based on QuEChERS[J]. Analytical Chemistry,2022,50(5):810−821.
    [3] 李明, 高文晖, 余建龙, 等. 双酚类化合物促进乳腺癌细胞增殖活性的研究[J]. 毒理学杂志,2021,35(3):179−183,192. [LI M, GAO W H, YU J L, et al. Study on the effect of bisphenols on the proliferation of breast cancer cells[J]. Journal of Toxicology,2021,35(3):179−183,192.
    [4] LEE H R, JEUNG E B, CHO M H, et al. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors[J]. Journal of Cellular and Molecular Medicine,2013,17(1):1−11. doi: 10.1111/j.1582-4934.2012.01649.x
    [5] COSTA E M, SPRITZER P M, HOHL A, et al. Effects of endocrine disruptors in the development of the female reproductive tract[J]. Arquivos Brasileiros de Endocrinologia e Metabologia,2014,58(2):153−161. doi: 10.1590/0004-2730000003031
    [6] WILLHITE C C, DASTON G P. Bisphenol exposure, hazard and regulation[J]. Toxicology,2019,425:152243. doi: 10.1016/j.tox.2019.152243
    [7] 吴皓, 孙东, 蔡卓平, 等. 双酚A的内分泌干扰效应研究进展[J]. 生态科学,2017,36(3):200−206. [WU H, SUN D, CAI Z P, et al. Research progress on endocrine disrupting effect of bisphenol A[J]. Ecological Science,2017,36(3):200−206.
    [8] WINKLER J, LIU P, PHONG K, et al. Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(11):e2115308119. doi: 10.1073/pnas.2115308119
    [9] REED J M, SPINELLI P, FALCONE S, et al. Evaluating the effects of BPA and TBBPA exposure on pregnancy loss and maternal-fetal immune cells in mice[J]. Environmental Health Perspectives,2022,130(3):37010. doi: 10.1289/EHP10640
    [10] LIU J, LIAO M, HUANG R, et al. Perinatal combinational exposure to bisphenol a and a high-fat diet contributes to transgenerational dysregulation of cardiovascular and metabolic systems in mice[J]. Frontiers in Cell and Developmental Biology,2022,10:834346. doi: 10.3389/fcell.2022.834346
    [11] CHEN D, KANNAN K, TAN H, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-a review[J]. Environmental Science & Technology,2016,50(11):5438−5453.
    [12] VANDENBERG LN, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA)[J]. Reproductive Toxicology,2007,24(2):139−77. doi: 10.1016/j.reprotox.2007.07.010
    [13] ZINCKE T. Mittheilungen aus dem chemischen laboratorium der universitat marburg[J]. Justus Liebigs Annalen der Chemie,1905,343:75−99. doi: 10.1002/jlac.19053430106
    [14] SABRY R, NGUYEN M, YOUNES S, et al. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression[J]. Molecular and Cellular Endocrinology,2022,545:111574. doi: 10.1016/j.mce.2022.111574
    [15] SERRA H, BEAUSOLEIL C, HABERT R, et al. Evidence for bisphenol B endocrine properties: Scientific and regulatory perspectives[J]. Environmental Health Perspectives,2019,127(10):106001. doi: 10.1289/EHP5200
    [16] CATENZA C J, FAROOQ A, SHUBEAR N S, et al. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues[J]. Chemosphere,2021,268:129273. doi: 10.1016/j.chemosphere.2020.129273
    [17] WANG H, SONG S, SHAO M, et al. Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector[J]. Ecotoxicology and Environmental Safety,2019,186:109778. doi: 10.1016/j.ecoenv.2019.109778
    [18] 杨倩, 刘建梅, 丁洁, 等. 双酚B对斑马鱼性别分化的影响及作用机制[J]. 生态毒理学报,2021,16(4):151−159. [YANG Q, LIU J M, DING J, et al. Effect and mechanism of bisphenol B on sex differentiation of zebrafish[J]. Journal of Ecotoxicology,2021,16(4):151−159.
    [19] LU S, YU Y, REN L, et al. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact[J]. The Science of the Total Environment,2018,21:389−1396.
    [20] ROCHESTER J R, BOLDEN A L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol a substitutes[J]. Environmental Health Perspectives,2015,23(7):43−650.
    [21] KURUTO-NIWA R, NOZAWA R, MIYAKOSHI T, et al. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system[J]. Environmental Toxicology and Pharmacology,2005,19(1):121−130. doi: 10.1016/j.etap.2004.05.009
    [22] 李星, 王浩, 张文超, 等. 固相萃取-液相色谱-串联质谱法同时测定牛奶中双酚A、双酚F和双酚S[J]. 中国食品学报,2022,22(4):382−386. [LI X, WANG H, ZHANG W C, et al. Simultaneous determination of bisphenol A, bisphenol F and bisphenol S in milk by solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Food,2022,22(4):382−386.
    [23] MATSUSHIMA A, LIU X, OKADA H, et al. Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta[J]. Environmental Health Perspectives,2010,118(9):1267−1272. doi: 10.1289/ehp.0901819
    [24] JI K, CHOI K. Endocrine disruption potentials of bisphenol A alternatives[J]. Korean Journal of Environmental Health Sciences,2013,39(1):1−18. doi: 10.5668/JEHS.2013.39.1.1
    [25] 付国瑞, 鲁文嘉. 袋装液态乳中4种双酚类化合物的检测与分析[J]. 食品安全导刊,2018,197(6):153−156. [FU G R, LU W J. Detection and analysis of four bisphenols in bagged liquid milk[J]. Food Safety Guide,2018,197(6):153−156.
    [26] 黄苑, 张维, 王瑞国, 等. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报,2022,17(1):1−27. [HUANG Y, ZHANG W, WANG R G, et al. Research progress on pollution status and endocrine disrupting effects of bisphenols[J]. Journal of Ecotoxicology,2022,17(1):1−27.
    [27] LAUREL P. Potential designated chemicals: p,p'-Bisphenols and diglycidyl ethers of p,p'-bisphenols[C]//Biomonitoring California Scientific Guidance Panel Meeting. Sacramento: Office of Environmental Health Hazard Assessment, 2012: 3
    [28] XUE J, KANNAN P, KUMOSANI T A, et al. Resin-based dental sealants as a source of human exposure to bisphenol analogues, bisphenol A diglycidyl ether, and its derivatives[J]. Environmental Research,2018,162:35−40. doi: 10.1016/j.envres.2017.12.011
    [29] BECERRA V, ODERMATT J. Interferences in the direct quantification of bisphenol S in paper by means of thermochemolysis[J]. Journal of Chromatography A,2013,1275:70−77. doi: 10.1016/j.chroma.2012.12.034
    [30] ZHANG L, FANG P, YANG L, et al. Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater[J]. Langmuir:The ACS Journal of Surfaces and Colloids,2013,29(12):3968−3975. doi: 10.1021/la304792m
    [31] ZHANG J, SHI J, GE H, et al. Tiered ecological risk assessment of nonylphenol and tetrabromobisphenol A in the surface waters of China based on the augmented species sensitivity distribution models[J]. Ecotoxicology and Environmental Safety,2022,236:113446. doi: 10.1016/j.ecoenv.2022.113446
    [32] YE G, CHEN Y, WANG H O, et al. Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A[J]. Scientific Reports,2016,6:35257. doi: 10.1038/srep35257
    [33] 杨丹, 李丹丹, 刘姗姗, 等. 双酚A对机体的影响及其作用机制[J]. 现代预防医学,2008(17):3280−3282,3287. [YANG D, LI D D, LIU S S, et al. Effect of bisphenol A on body and its mechanism[J]. Modern Preventive Medicine,2008(17):3280−3282,3287. doi: 10.3969/j.issn.1003-8507.2008.17.011
    [34] BHANDARI R K, VOM-SAAL F S, TILLITT D E. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka, Oryzias latipes[J]. Scientific Reports,2015,5:9303. doi: 10.1038/srep09303
    [35] BHANDARI R K, WANG X, SAAL F S V, et al. Transcriptome analysis of testis reveals the effects of developmental exposure to bisphenol a or 17α-ethinylestradiol in medaka (Oryzias latipes)[J]. Aquatic Toxicology,2020,225:105553. doi: 10.1016/j.aquatox.2020.105553
    [36] REZAEE-TAZANGI F, ZEIDOONI L, RAFIEE Z, et al. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility[J]. JBRA Assisted Reproduction,2020,24(4):428−435.
    [37] MARKEY C M, COOMBS M A, SONNENSCHEIN C, et al. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs[J]. Evolution & Development,2003,5(1):67−75.
    [38] RICHTER C A, BIRNBAUM L S, FARABOLLINI F, et al. In vivo effects of bisphenol A in laboratory rodent studies[J]. Reproductive Toxicology,2007,24(2):199−224.
    [39] PIAZZA M J, URBANETZ A A. Environmental toxins and the impact of other endocrine disrupting chemicals in women's reproductive health[J]. JBRA Assisted Reproduction,2019,23(2):154−164.
    [40] XUE W, YAO X, TING G, et al. BPA modulates the WDR5/TET2 complex to regulate ERβ expression in eutopic endometrium and drives the development of endometriosis[J]. Environmental Pollution,2021,268(Pt B):115748.
    [41] NGUYEN M, SABRY R, DAVIS O S, et al. Effects of BPA, BPS, and BPF on oxidative stress and antioxidant enzyme expression in bovine oocytes and spermatozoa[J]. Genes,2022,13(1):142. doi: 10.3390/genes13010142
    [42] LI N, KANG H, PENG Z, et al. Physiologically detectable bisphenol A impairs human sperm functions by reducing protein-tyrosine phosphorylation[J]. Ecotoxicology and Environmental Safety,2021,221:112418. doi: 10.1016/j.ecoenv.2021.112418
    [43] ULLAH H, ULLAH F, REHMAN O, et al. Chronic exposure of bisphenol S (BPS) affect hypothalamic-pituitary-testicular activities in adult male rats: Possible in estrogenic mode of action[J]. Environmental Health and Preventive Medicine,2021,26(1):31. doi: 10.1186/s12199-021-00954-0
    [44] KARMAKAR P C, AHN J S, KIM Y H, et al. Paternal Exposure to bisphenol-A transgenerationally impairs testis morphology, germ cell associations, and stemness properties of mouse spermatogonial stem cells[J]. International Journal of Molecular Sciences,2020,21(15):5408. doi: 10.3390/ijms21155408
    [45] YANG L, BAUMANN C, DE-LA-FUENTE R, et al. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds[J]. Reproduction,2020,159(4):383−396. doi: 10.1530/REP-19-0494
    [46] ULLAH A, PIRZADA M, AFSAR T, et al. Effect of bisphenol F, an analog of bisphenol A, on the reproductive functions of male rats[J]. Environmental Health and Preventive Medicine,2019,24(1):41. doi: 10.1186/s12199-019-0797-5
    [47] YANG Q, YANG X H, LIU J N, et al. Exposure to bisphenol b disrupts steroid hormone homeostasis and gene expression in the hypothalamic–pituitary–gonadal axis of zebrafish[J]. Water Air & Soil Pollution,2017,228(3):112.1−112.12.
    [48] YANG X, LIU Y, LI J, et al. Exposure to bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish[J]. Environmental Toxicology,2016,31(3):285−294. doi: 10.1002/tox.22043
    [49] 谢军, 李小玲, 陈宏. 双酚A致体外培养大鼠胚胎发育毒性的时间-效应关系研究[J]. 实用预防医学,2010,17(8):1649−1651. [XIE J, LI X L, CHEN H, et al. Study on time-effect relationship of developmental toxicity of rat embryos induced by bisphenol A in vitro[J]. Practical Preventive Medicine,2010,17(8):1649−1651. doi: 10.3969/j.issn.1006-3110.2010.08.075
    [50] 王连卿. 双酚A对小鼠早期胚胎体外发育的影响[D]. 哈尔滨: 东北农业大学, 2007

    WANG L Q. Effect of bisphenol A on the development of early mouse embryos in vitro[D]. Harbin: Northeast Agricultural University, 2007.
    [51] 裴新荣, 李勇, 龙鼎新, 等. 双酚A对小鼠早期胚胎发育毒性的体外实验研究[J]. 中国生育健康杂志,2003(1):34−37, 65. [PEI X R, LI Y, LONG D X, et al. Experimental study on the toxicity of bisphenol A on early embryonic development of mice in vitro[J]. Chinese Journal of Reproductive Health,2003(1):34−37, 65.
    [52] CHEN H, ZHONG K, ZHANG Y, et al. Bisphenol A interferes with redox balance and the Nrf2 signaling pathway in xenopus tropicalis during embryonic development[J]. Animals,2022,12(7):937. doi: 10.3390/ani12070937
    [53] MCCORMICK J M, PAIVA M S, HÄGGBLOM M M, et al. Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression[J]. Aquatic toxicology,2010,100(3):255−262. doi: 10.1016/j.aquatox.2010.07.019
    [54] 王英红, 徐虹, 孔庆鑫, 等. 双酚S急性暴露对斑马鱼胚胎及子代胚胎发育的毒性效应[J]. 中国卫生检验杂志,2019,29(1):32−36. [WANG Y H, XU H, KONG Q X, et al. Toxic effects of acute exposure to bisphenol S on embryo and offspring embryo development of zebrafish[J]. Chinese Journal of Health Inspection,2019,29(1):32−36.
    [55] 郭依晨, 韩静静, 严锐, 等. 双酚A胚胎期暴露对斑马鱼的发育毒性及运动行为的影响[J]. 毒理学杂志,2018,32(2):152−155. [GUO Y C, HAN J J, YAN R, et al. Effects of embryonic exposure to bisphenol A on developmental toxicity and exercise behavior of zebrafish[J]. Journal of Toxicology,2018,32(2):152−155. doi: 10.16421/j.cnki.1002-3127.2018.02.015
    [56] 王宏烨, 曹诚, 刘益海, 等. 双酚AP对斑马鱼心脏发育毒性作用研究[J]. 环境科学与技术,2019,42(8):1−6. [WANG H B, CAO Y, LIU Y H, et al. Study on cardiac developmental toxicity of bisphenol AP on zebrafish[J]. Environmental science and technology,2019,42(8):1−6.
    [57] HARNETT K G, MOORE L G, CHIN A, et al. Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development[J]. Current research in Toxicology,2021,2:399−410. doi: 10.1016/j.crtox.2021.11.001
    [58] ZHOU R, XIA M, ZHANG L, et al. Individual and combined effects of BPA, BPS and BPAF on the cardiomyocyte differentiation of embryonic stem cells[J]. Ecotoxicology and Environmental Safety,2021,220:112366. doi: 10.1016/j.ecoenv.2021.112366
    [59] GE Y, REN F, CHEN L, et al. Bisphenol A exposure induces apoptosis and impairs early embryonic development in Xenopus laevis[J]. Environmental Pollution,2021,280:116901. doi: 10.1016/j.envpol.2021.116901
    [60] YANG Q, ZHU Z, LIU Q, et al. Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish[J]. Comparative Biochemistry and Physiology. Toxicology & Ppharmacology:CBP,2021,250:109167.
    [61] LEE C T, HSIEH C F, WANG J Y. Bisphenol a Induces Autophagy Defects and AIF-Dependent Apoptosis via HO-1 and AMPK to Degenerate N2a Neurons[J]. International Journal of Molecular Sciences,2021,22(20):10948. doi: 10.3390/ijms222010948
    [62] SAHOO P K, APARNA S, NAIK P K, et al. Bisphenol A exposure induces neurobehavioral deficits and neurodegeneration through induction of oxidative stress and activated caspase-3 expression in zebrafish brain[J]. Journal of Biochemical and Molecular Toxicology,2021,35(10):e22873.
    [63] KOIKE E, YANAGISAWA R, WIN-SHWE T T, et al. Exposure to low-dose bisphenol A during the juvenile period of development disrupts the immune system and aggravates allergic airway inflammation in mice[J]. International Journal of Immunopathology and Pharmacology,2018,32:1−14.
    [64] YOUN J Y, PARK H Y, LEE J W, et al. Evaluation of the immune response following exposure of mice to bisphenol A: induction of Th1 cytokine and prolactin by BPA exposure in the mouse spleen cells[J]. Archives of Pharmacal Research,2002,25(6):946−953. doi: 10.1007/BF02977018
    [65] LEE J, LIM K T. Plant-originated glycoprotein (36 kDa) suppresses interleukin-4 and -10 in bisphenol A-stimulated primary cultured mouse lymphocytes[J]. Drug and Chemical Toxicology,2010,33(4):421−429. doi: 10.3109/01480541003739229
    [66] SUGITA-KONISHI Y, SHIMURA S, NISHIKAWA T, et al. Effect of Bisphenol A on non-specific immunodefenses against non-pathogenicEscherichia coli[J]. Toxicology Letters,2003,136(3):217−227. doi: 10.1016/S0378-4274(02)00388-0
    [67] GOTO M, TAKANO-ISHIKAWA Y, ONO H, et al. Orally administered bisphenol A disturbed antigen specific immunoresponses in the naive condition[J]. Bioscience, Biotechnology, and Biochemistry,2007,71(9):2136−2143. doi: 10.1271/bbb.70004
    [68] ROY A, BAUER S M, LAWRENCE B P. Developmental exposure to bisphenol A modulates innate but not adaptive immune responses to influenza A virus infection[J]. PLoS One,2012,7(6):e38448. doi: 10.1371/journal.pone.0038448
    [69] FEITEIRO J, MARIANA M, GLÓRIA S, et al. Inhibition of L-type calcium channels by Bisphenol A in rat aorta smooth muscle[J]. The Journal of Toxicological Sciences,2018,43(10):579−586. doi: 10.2131/jts.43.579
    [70] BROWN A R, GREEN J M, MOREMAN J, et al. Cardiovascular effects and molecular mechanisms of bisphenol A and its metabolite MBP in zebrafish[J]. Environmental Science & Technology,2019,53(1):463−474.
    [71] PAL S, SARKAR K, NATH P P, et al. Bisphenol S impairs blood functions and induces cardiovascular risks in rats[J]. Toxicology Reports,2017,4:560−565. doi: 10.1016/j.toxrep.2017.10.006
    [72] ILOZUMBA M N, SHELVER W L, HONG C C, et al. Urinary concentrations of triclosan, bisphenol A, and brominated flame retardants and the association of triclosan with demographic characteristics and body fatness among women with newly diagnosed breast cancer[J]. International Journal of Environmental Research and Public Health,2022,19(8):4681. doi: 10.3390/ijerph19084681
    [73] ZHANG X, GUO N, JIN H, et al. Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis via regulating HDAC6/PTEN and c-MYC signaling[J]. Journal of hazardous materials,2022,425:127911. doi: 10.1016/j.jhazmat.2021.127911
    [74] 龙子, 樊隽澍, 吴光源, 等. 低剂量双酚A通过调控PPARγ致小鼠糖脂代谢紊乱的研究[J]. 癌变·畸变·突变,2020,32(04):245−255. [LONG Z, FAN J S, WU G Y, et al. Low-dose bisphenol A regulates glucose and lipid metabolism disorder induced by PPARγ in mice[J]. Cancerous Aberration Mutation,2020,32(04):245−255.
    [75] MASUNO H, KIDANI T, SEKIYA K, et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes[J]. Journal of Lipid Research,2002,43(5):676−684. doi: 10.1016/S0022-2275(20)30108-5
    [76] WADA K, SAKAMOTO H, NISHIKAWA K, et al. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome[J]. Journal of Pharmacological Sciences,2007,105(2):133−137. doi: 10.1254/jphs.FM0070034
    [77] SARGIS R M, JOHNSON D N, CHOUDHURY R A, et al. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation[J]. Obesity,2010,18(7):1283−1288. doi: 10.1038/oby.2009.419
    [78] HUC L, LEMARIÉ A, GUÉRAUD F, et al. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells[J]. Toxicology in Vitro: An International Journal Published in Association with BIBRA,2012,26(5):709−717.
    [79] MOON M K, KIM M J, JUNG I K, et al. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level[J]. Journal of Korean Medical Science,2012,27(6):644−652. doi: 10.3346/jkms.2012.27.6.644
    [80] HASSAN Z K, ELOBEID M A, VIRK P, et al. Bisphenol A induces hepatotoxicity through oxidative stress in rat model[J]. Oxidative Medicine and Cellular longevity,2012,2012:194829.
    [81] HYUN S A, KO M Y, JANG S, et al. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex[J]. Disease Models & Mechanisms, 2022, 049177.
    [82] DONG P, YE G, TU X, et al. Roles of ERRα and TGF-β signaling in stemness enhancement induced by 1 µM bisphenol A exposure via human neural stem cells[J]. Experimental and Therapeutic Medicine,2022,23(2):164.
    [83] WU M, CONG Y, WANG K, et al. Bisphenol A impairs macrophages through inhibiting autophagy via AMPK/mTOR signaling pathway and inducing apoptosis[J]. Ecotoxicology and Environmental Safety,2022,234:113395. doi: 10.1016/j.ecoenv.2022.113395
    [84] LOUP B, POUMEROL E, JOUNEAU L, et al. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly[J]. Reproductive Toxicology,2022,111:166−177. doi: 10.1016/j.reprotox.2022.06.001
    [85] 杨静. 双酚A及其类似物生物效应及构效关系研究[D]. 黄石: 湖北师范大学, 2021

    YANG J. Study on biological effects and structure-activity relationship of bisphenol A and its analogues[D]. Huangshi: Hubei normal University, 2021.
    [86] KHAN N G, CORREIA J, ADIGA D, et al. A comprehensive review on the carcinogenic potential of bisphenol A:Clues and evidence[J]. Environmental Science and Pollution Research International, 2021, 28(16): 19643-19663.
    [87] TUDURÍ E, MARROQUI L, DOS SANTOS R S, et al. Timing of exposure and Bisphenol-A: Implications for diabetes development[J]. Frontiers in Endocrinology,2018,9:648. doi: 10.3389/fendo.2018.00648
    [88] VOM-SAAL F S, NAGEL S C, COE B L, et al. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity[J]. Molecular and Cellular Endocrinology,2012,354(1−2):74−84. doi: 10.1016/j.mce.2012.01.001
    [89] SÁNCHEZ-GARRIDO M A, GARCÍA-GALIANO D, TENA-SEMPERE M. Early programming of reproductive health and fertility: Novel neuroendocrine mechanisms and implications in reproductive medicine[J]. Human Reproduction Update,2022,28(3):346−375. doi: 10.1093/humupd/dmac005
    [90] ACCONCIA F, PALLOTTINI V, MARINO M. Molecular mechanisms of action of BPA[J]. Dose-response:A Publication of International Hormesis Society,2015,13(4):1−9.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回