Effects of Temperature on the Quality of Procambarus clarkii during Waterless Preservation
-
摘要: 为探究无水贮藏温度对克氏原螯虾保活期间品质的影响,本文分析了不同无水贮藏温度下克氏原螯虾保活期间存活率、肌肉品质、生理指标的变化。结果显示,无水贮藏72 h时,4~16 ℃组的克氏原螯虾的存活率仍有80%~90%;24 ℃组降至40%;32 ℃组为0。虾尾肌肉的水分含量、持水率、硬度和弹性随着贮藏温度的升高与贮藏时间的延长显著下降(P<0.05),乳酸的生成降低了肌肉的pH。4、24与32 ℃组超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)酶活力及丙二醛(MDA)含量随着贮藏时间的延长显著升高(P<0.05),8~16 ℃组的氧化应激响应较低于4、24和32 ℃组。酸性磷酸酶(ACP)和碱性磷酸酶(AKP)以及溶菌酶(LZM)活性在4、24与32 ℃贮藏条件下显著升高(P<0.05),8~16 ℃组的变化相对平稳。研究表明,无水贮藏中保持适当低温条件,在12~16 ℃范围内,可提高克氏原螯虾存活率和肌肉品质,这与机体保持较低的氧化应激水平及维持良好的免疫机制有关,本实验结果可为克氏原螯虾无水贮运提供理论依据。Abstract: In order to investigate the effects of temperature on the quality of Procambarus clarkiii during waterless preservation, the changes in survival rates, muscle flesh quality, and physiological indicators of Procambarus clarkiii were analyzed under different waterless storage temperatures. The results showed that the survival rates of Procambarus clarkii in those of 4~16 ℃ groups were 80%~90% after 72 h of waterless preservation, the 24 ℃ group dropped to 40%, and the 32 °C group had reached zero. The moisture content, water-holding capacity, muscle hardness, and elasticity of muscle decreased significantly with the increase in temperature and time (P<0.05). The muscle pH was decreased by the production of lactic acid. The activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content in 4, 24 and 32 ℃ groups were increased significantly with the extension of storage time (P<0.05), the oxidative stress response value of 8~16 ℃ groups was lower than those of 4, 24 and 32 ℃ groups. The activities of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) were increased significantly in 4, 24, and 32 ℃ groups (P<0.05), and the changes were relatively stable in those of 8~16 ℃ groups. The results indicated that the survival rates and muscle quality of Procambarus clarkii might be improved by keeping the appropriate low temperature in the range of 12~16 ℃ during waterless preservation, which was related to the maintenance of low oxidative stress levels and good immune mechanisms. The results would provide a theoretical basis for the waterless storage and transportation of Procambarus clarkiii.
-
Key words:
- Procambarus clarkii /
- waterless preservation /
- temperature /
- texture /
- physiological indicators
-
表 1 克氏原螯虾肌肉水分含量的变化(%)
Table 1. Changes of muscle moisture content of Procambarus clarkii (%)
组别(℃) 无水贮藏时间(h) 0 24 48 72 4 83.80±0.98Aa 81.32±0.47ABb 81.18±0.78ABb 80.13±1.63Ab 8 83.80±0.98Aa 82.43±0.30Aab 81.22±1.34ABbc 80.01±0.93Ac 12 83.80±0.98Aa 82.78±0.24Aab 82.33±0.55Ab 81.18±0.39Ac 16 83.80±0.98Aa 81.77±0.56ABb 81.36±1.11ABb 81.27±1.00Ab 24 83.80±0.98Aa 80.69±1.47BCb 80.12±0.35Bb 79.74±0.60Ab 32 83.80±0.98Aa 79.47±1.04Cb 75.82±1.20Cc − 注:同列不同大写字母代表同一贮藏时间下不同温度样品间差异显著(P<0.05);同行不同小写字母代表同一温度下不同时间样品间差异显著(P<0.05);表1~表3同。 表 2 克氏原螯虾持水率与蒸煮损失率的变化
Table 2. Changes in water holding capacity and cooking loss rate of Procambarus clarkii
指标 组别(℃) 无水贮藏时间(h) 0 24 48 72 持水率(%) 4 90.38±0.81Aa 89.55±4.41Aa 85.02±0.57Aab 83.41±3.95Ab 8 90.38±0.81Aa 89.12±2.09Aab 83.93±1.45Abc 82.80±4.94Ac 12 90.38±0.81Aa 90.21±0.23Aa 85.03±3.23Aa 84.67±6.06Aa 16 90.38±0.81Aa 88.50±1.93Aa 86.20±2.63Aa 85.11±4.60Aa 24 90.38±0.81Aa 89.90±1.95Aa 83.85±2.11Aa 83.80±10.9Aa 32 90.38±0.81Aa 84.66±6.03Aab 82.66±3.04Ab − 蒸煮损失率(%) 4 17.13±0.71Ac 29.51±0.72Cab 30.96±1.11Ba 28.20±0.77Bb 8 17.13±0.71Ad 25.94±0.65Dc 29.04±0.73Cb 32.11±0.97Aa 12 17.13±0.71Ad 23.03±0.44Ec 25.48±0.32Db 27.13±0.20Ba 16 17.13±0.71Ac 25.53±0.25Dab 26.35±0.19Da 24.48±1.01Db 24 17.13±0.71Ac 32.70±0.32Ba 27.96±0.43Cb 32.11±2.36Aa 32 17.13±0.71Ab 34.18±0.54Aa 34.03±0.92Aa − 表 3 克氏原螯虾肌肉硬度、弹性、咀嚼性的变化
Table 3. Changes in muscle hardness, elasticity, and chewability of Procambarus clarkii
指标 组别(℃) 无水贮藏时间(h) 0 24 48 72 硬度
(N)4 46.68±4.04Aa 46.23±6.05ABa 27.69±3.87Cb 32.79±4.72ABb 8 46.68±4.04Aa 47.24±6.39ABa 36.90±8.48ABCa 36.53±10.33ABa 12 46.68±4.04Aa 49.43±6.14Aa 39.95±3.69Ab 38.38±3.76Ab 16 46.68±4.04Aa 47.37±4.03ABa 34.84±6.20ABCb 27.83±4.23ABb 24 46.68±4.04Aa 45.05±5.42ABab 39.43±2.83ABb 28.73±0.53ABc 32 46.68±4.04Aa 37.32±3.31Bab 28.42±7.31BCb − 弹性
(mm)4 2.04±0.22Aa 1.72±0.07ABab 1.47±0.35Bb 1.49±0.07Ab 8 2.04±0.22Aa 1.75±0.14ABab 1.59±0.15ABb 1.59±0.17Ab 12 2.04±0.22Aa 1.64±0.11ABbc 1.86±0.07Aab 1.55±0.07Ac 16 2.04±0.22Aa 1.89±0.43Aab 1.48±0.06Bb 1.58±0.11Aab 24 2.04±0.22Aa 1.64±0.22ABb 1.73±0.22Aab 1.38±0.08Bb 32 2.04±0.22Aa 1.41±0.18Bb 1.42±0.25Bb − 咀嚼性(mJ) 4 26.17±10.71Aa 22.00±2.77Aab 11.03±8.79Bb 13.07±2.95Bab 8 26.17±10.71Aa 22.33±5.68Aa 16.27±5.72ABa 16.70±8.31ABa 12 26.17±10.71Aa 20.97±3.82Aa 23.93±5.91Aa 15.70±3.86ABa 16 26.17±10.71Aa 28.27±14.83Aa 13.50±1.30ABb 11.57±2.96Bb 24 26.17±10.71Aa 20.10±9.56Aa 19.20±9.27ABa 9.63±1.94Bb 32 26.17±10.71Aa 14.13±6.91Ab 9.83±5.28Bb − 表 4 克氏原螯虾肌肉品质变化的相关性分析
Table 4. Correlation analysis of muscle quality changes of Procambarus clarkii
存活率 水分含量 持水率 蒸煮损失率 硬度 弹性 咀嚼性 存活率 1 水分含量 0.303* 1 持水率 0.305* 0.239 1 蒸煮损失率 −0.408** −0.533** −0.242 1 硬度 0.448** 0.444** 0.302* −0.255 1 弹性 0.423** 0.386** 0.153 −0.279* 0.560** 1 咀嚼性 0.408** 0.364** 0.136 −0.226 0.771** 0.814** 1 注:**P<0.01,极显著相关;*P<0.05,显著相关。 -
[1] 于秀娟, 郝向举, 党子乔, 等. 中国小龙虾产业发展报告(2022)[J]. 中国水产,2022(6):47−54. [YU X J, HAO X J, DANG Z Q, et al. China crayfish industry development report (2022)[J]. China Fisheries,2022(6):47−54. [2] 肖童, 王红丽, 王锡昌. 虾蟹类水产品保活运输的研究进展[J]. 食品与发酵工业,2022,48(16):326−333. [XIAO T, WANG H L, WAND X C. Research progress on keep-alive transportation of shrimp and crab[J]. Food and Fermentation Industries,2022,48(16):326−333. [3] LU Y, ZHANG D, WANG F, et al. Hypothermal effects on survival, energy homeostasis and expression of energy-related genes of swimming crabs Portunus trituberculatus during air exposure[J]. Journal of Thermal Biology,2016,60:33−40. doi: 10.1016/j.jtherbio.2016.06.007 [4] 陈水春, 储霞玲, 班庭辉. 3种龙虾的休眠温度及低温休眠技术研究[J]. 海洋渔业,2018,40(4):489−494. [CHEN S C, CHU X L, BAN T H. Study on dormancy temperature and low temperature dormancy technique of three kinds of lobsters[J]. Marine Fisheries,2018,40(4):489−494. doi: 10.3969/j.issn.1004-2490.2018.04.012 [5] 吴波, 谢晶. 石斑鱼有水活运工艺中温度、盐度的优化[J]. 食品科学,2019,40(16):235−241. [WU B, XIE J. Optimization of water temperature and salinity of live transportation of grouper[J]. Food Science,2019,40(16):235−241. doi: 10.7506/spkx1002-6630-20181101-012 [6] 何乃娟, 阮国良, 刘玉林, 等. 持续高温胁迫对克氏原螯虾生长, 消化酶活性与免疫指标的影响[J]. 水生生物学报,2022,46(3):395−402. [HE N J, RUAN G L, LIU Y L, et al. Effects of sustained high-temperature stress on growth performance, digestive enzyme activity and immune index of crayfish, Procambarus clarkii[J]. Acta Hydrobiology,2022,46(3):395−402. doi: 10.7541/2022.2021.0207 [7] WU D L, LIU Z Q, HUANG Y H, et al. Effects of cold acclimation on the survival, feeding rate, and non-specific immune responses of the freshwater red claw crayfish (Cherax quadricarinatus)[J]. Aquaculture International,2018,26(2):557−567. doi: 10.1007/s10499-018-0236-4 [8] FAN X P, QIN X M, ZHANG C H, et al. Metabolic and anti-oxidative stress responses to low temperatures during the waterless preservation of the hybrid grouper (Epinephelus fuscogutatus♀×Epinephelus lanceolatus♂)[J]. Aquaculture,2019,508:10−18. doi: 10.1016/j.aquaculture.2019.04.054 [9] XU Z, GUAN W, XIE D, et al. Evaluation of immunological response in shrimp Penaeus vannamei submitted to low temperature and air exposure[J]. Developmental & Comparative Immunology,2019,100:103413. [10] 米红波, 张婷, 姜琦, 等. 低温无水保活对虾夷扇贝肌肉质构和肝组织生化特性的影响[J]. 食品科学技术学报,2022:1−10. [MI H B, ZHANG T, JIANG Q, et al. Effects of waterless keep-alive at low temperature on muscle texture and liver biochemical characteristics of Patinopecten yessoensis[J]. Journal of Food Science and Technology,2022:1−10. doi: 10.12301/spxb202100636 [11] SANTURTUN E, BROOM D M, PHLILLIPS C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar)[J]. Animal Welfare,2018,27(3):193−204. doi: 10.7120/09627286.27.3.193 [12] 国家卫生和计划生育委员会. GB 5009.5-2016 食品中水分含量的测定[S]. 北京: 中国标准出版社, 2016National Health and Family Planning Commission GB 5009.5-2016 Determination of moisture content in food[S]. Beijing: China Standards Press, 2016. [13] ZHANG W, CHENG S, WANG S, et al. Effect of pre-frying on distribution of protons and physicochemical qualities of mackerel[J]. Journal of the Science of Food and Agriculture,2021,101(11):4838−4846. doi: 10.1002/jsfa.11130 [14] LAN W Q, HU X Y, SUN X H, et al. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vanname): An emphasis on moisture migration and microstructure by LF-NMR and SEM[J]. Aquaculture and Fisheries,2020,5(4):193−200. doi: 10.1016/j.aaf.2019.05.007 [15] WANG X Y, XIE J. Evaluation of water dynamics and protein changes in bigeye tuna (Thunnus obesus) during cold storage[J]. LWT-Food Science and Technology,2019,108:289−296. doi: 10.1016/j.lwt.2019.03.076 [16] 孙存鑫, 熊哲, 周群兰, 等. 不同脂肪源日粮补充维生素E对罗氏沼虾生长、免疫及肉品质的影响[J]. 中国水产科学,2020,27(7):801−814. [SUN C X, XIONG Z, ZHOU Q L, et al. Effects of various dietary lipid sources combined with vitamin E supplementation on growth performance, immunity and flesh quality in Macrobrachium rosenbergii[J]. China Fisheries Science,2020,27(7):801−814. [17] SHARIFIAN S, SHABANPOUR B, TAHERI A, et al. Effect of phlorotannins on melanosis and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage[J]. Food Chemistry,2019,298(NOV.15):124980. [18] 宋玉, 郑健, 黄峰, 等. 不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响[J]. 食品工业科技,2022,43(23):103−111. [SONG Y, ZHENG J, HUANG F, et al. Effects of different salting methods on the quality traits, histomorphology and protein structure of cooked pork steaks[J]. Science and Technology of Food Industry,2022,43(23):103−111. doi: 10.13386/j.issn1002-0306.2022030282 [19] 陈超杰, 王曜, 徐如颖, 等. 不同冷却方式对冷鲜鸡肉品质的影响[J]. 包装工程,2021,42(11):26−32. [CHEN C J, WANG Y, XU R Y, et al. Effects of different cooling methods on the quality of chicken meat[J]. Packaging Engineering,2021,42(11):26−32. doi: 10.19554/j.cnki.1001-3563.2021.11.004 [20] CAI L, HANG W, CAO A, et al. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum)[J]. Ultrasonics Sonochemistry,2019,55:96−104. doi: 10.1016/j.ultsonch.2019.03.017 [21] 朱圣赟, 蓝蔚青, 浦天霆, 等. 双频超声联合柠檬酸处理对大黄鱼冷藏期间品质变化影响[J]. 食品科学,2023,44(1):246−255. [ZHU S Y, LAN W Q, PU T T, et al. Effect of dual-frequency ultrasound combined with citric acid treatment on quality change of large yellow croaker (Pseudosciaena crocea) during refrigerated storage[J]. Food Science,2023,44(1):246−255. [22] 管维良. 南美白对虾无水保活及其生化和肉质的应激响应[D]. 杭州: 浙江大学, 2021GUAN W L. The development of water-free transportation for live Litopenaeus vannamei and the biochemical and muscular stress responses[D]. Hangzhou: Zhejiang University, 2021 [23] 徐德峰, 吴嘉鑫, 郑晓娴, 等. 生态冰温无水保活对凡纳滨对虾活力及肌肉品质的影响[J]. 广东海洋大学学报,2022,42(3):87−96. [XU D F, WU J X, ZHENG X X, et al. Effects of waterless transportation ecological ice temperature on mortality flesh degradation of shrimp Litopenaeus vannamei[J]. Journal of Guangdong Ocean University,2022,42(3):87−96. doi: 10.3969/j.issn.1673-9159.2022.03.012 [24] 杨永安, 李静静, 刘建福, 等. 不同温度波动对冻藏三文鱼色差和质构的影响[J]. 食品与发酵工业,2021,47(10):145−150. [YANG Y A, LI J J, LIU J F, et al. The effect of different temperature fluctuations on color difference and texture of frozen Salmon[J]. Food and Fermentation Industries,2021,47(10):145−150. doi: 10.13995/j.cnki.11-1802/ts.025815 [25] 刘澂, 吴嘉鑫, 徐德峰, 等. 南美白对虾响应急冷与无水暴露双重胁迫的生理变化特征[J]. 食品科学,2023,44(1):215−221. [LIU S, WU J X, XU D F, et al. Responding profiles of Penaeus vannamei exposed to stress of acute cold plunging and waterless duration[J]. Food Science,2023,44(1):215−221. [26] WANG W S, ZHANG Y J, LIU Y, et al. Effects of waterless live transportation on survivability, physiological responses and flesh quality in Chinese farmed sturgeon (Acipenser schrencki)[J]. Aquaculture,2019,518:734834. [27] 田娟, 涂玮, 曾令兵, 等. 饥饿和再投喂期间尼罗罗非鱼生长、血清生化指标和肝胰脏生长激素、类胰岛素生长因子-Ⅰ和胰岛素mRNA表达丰度的变化[J]. 水产学报,2012,36(6):900−907. [TIAN J, TU W, ZENG L B, et al. The changes in growth, serum biochemical indexes and GH/IGF-I/IN mRNA expression abundance of Oreoch romisniloticus during fasting and refeed in[J]. Journal of Fisheries of China,2012,36(6):900−907. doi: 10.3724/SP.J.1231.2012.27562 [28] 田兴. 运输应激对黄颡鱼和斑点叉尾鮰血液生化指标和肌肉品质的影响[D]. 武汉: 华中农业大学, 2016TIAN X. The effect of transport stress on flesh quality and blood biochemical parameters of yellow catfish Pelteobagus fulvidraco and channel catfish[D]. Wuhan: Huazhong Agricultural University, 2016. [29] WU Y, YOU X, SUN W, et al. Insight into acute heat stress on meat qualities of rainbow trout (Oncorhynchus mykiss) during short-time transportation[J]. Aquaculture,2021,543:737013. doi: 10.1016/j.aquaculture.2021.737013 [30] 朱旻琪, 管维良, 茅林春. 鱼类保活运输技术研究进展[J]. 食品研究与开发,2021,42(22):186−191. [ZHU M Q, GUAN W L, MAO L C. Research progress of fish keep-alive transportation technology[J]. Food Research and Development,2021,42(22):186−191. doi: 10.12161/j.issn.1005-6521.2021.22.028 [31] 陈晗, 吴嘉鑫, 徐德峰, 等. 南美白对虾无水保活双重环境胁迫下的存活变化规律及机理[J/OL]. 食品科学: 1−9 [2023-02-14]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210628.1516.014.html.CHEN H, WU J X, XU D F, et al. Preliminary exploration for the mortality mechanism of shrimp L. vannamei under combined stress of waterless live transport[J/OL]. Food Science, 1−9 [2023-02-14]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210628.1516.014.html. [32] 王博雅, 郭策, 黄璞祎, 等. 急性升温胁迫与恢复对葛氏鲈塘鳢抗氧化酶活性的影响[J]. 水产科学,2020,39(3):394−399. [WANG B Y, GUO C, HUANG P Y, et al. Effects of acute raising temperature stress and recovery on antioxidant enzyme activities of Amur sleeper Perccotus glenii[J]. Aquatic Science,2020,39(3):394−399. doi: 10.16378/j.cnki.1003-1111.2020.03.012 [33] 吴波, 谢晶. 溶解氧水平和振动对有水活运过程中石斑鱼氧化应激的影响[J]. 食品与机械,2019,35(8):137−142. [WU B, XIE J. Effect of dissolved oxygen level and vibration on oxidative stress of grouper during water transportation[J]. Food and Machinery,2019,35(8):137−142. doi: 10.13652/j.issn.1003-5788.2019.08.026 [34] 吴波, 谢晶. 鱼类保活运输中应激反应诱发因素及其影响研究进展[J]. 食品与机械,2018,34(7):169−172, 203. [WU B, XIE J. The inducing factors and effects of stress response in live transport of fish[J]. Food and Machinery,2018,34(7):169−172, 203. doi: 10.13652/j.issn.1003-5788.2018.07.035 [35] WEI K, YANG J. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology,2015,43(2):510−519. [36] HEINK A E, PARRISH A N, THOGAARD G H, et al. Oxidative stress among SOD-1 genotypes in rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology (Amsterdam, Netherlands),2013,144-145C:75−82. [37] DUAN Y, ZHANG Y, DOONG H, et al. Effect of desiccation on oxidative stress and antioxidant response of the black tiger shrimp Penaeus monodon[J]. Fish & Shellfish Immunology,2016:10−17. [38] PAITAL B, CHAINY G B N. Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): Effects of inhibitors, salinity and season[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2012,28(1):195−204. [39] LUO L, HUANG J H, LIU D L, et al. Comparative transcriptome analysis of differentially expressed genes and pathways in Procambarus clarkii (Louisiana crawfish) at different acute temperature stress[J]. Genomics,2022,114(4):110415. doi: 10.1016/j.ygeno.2022.110415 [40] HU M H, SHA L, SUI Y M, et al. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus[J]. Fish & Shellfish Immunology,2015,46(2):573−583. [41] 王晓雯, 朱华, 况新宇, 等. 盐度胁迫对杂交鲟生理及存活的影响[J]. 水产科学,2015,34(10):597−602. [WANG X W, ZHU H, KUANG X Y, et al. Effect of salinity stress on physiological status and survival of hybrid sturgeon[J]. Aquatic Science,2015,34(10):597−602. doi: 10.16378/j.cnki.1003-1111.2015.10.001 [42] 徐德峰, 王雅玲, 孙力军, 等. 降温及生态冰温条件对凡纳滨对虾无水存活时间的影响[J]. 广东海洋大学学报,2019,39(6):105−111. [XU D F, WANG Y L, SUN L J, et al. Effect of temperature-descending procedures and storing parameters on the preservation time of pacific white shrimp under waterless environment[J]. Journal of Guangdong Ocean University,2019,39(6):105−111. [43] 赵旺, 温为庚, 谭春明, 等. 饥饿胁迫对猛虾蛄溶菌酶和消化酶活性的影响[J]. 水产科技情报,2022,49(1):30−35. [ZHAO W, WEN W G, TAN C M, et al. Effects of starvation stress on activities of lysozyme and digestive enzymes of Harpiosquilla harpax[J]. Fisheries Science & Technology Information,2022,49(1):30−35. doi: 10.16446/j.fsti.20200700127