Optimization of Preparing Technology of Clam Peptide and Its Enhanced Immunomodulatory Effect
-
摘要: 目的:以菲律宾蛤仔(Ruditapes philippinarum)为原料,研究蛋白肽制备工艺及其增强免疫活性。方法:以蛋白水解度为评价指标,筛选最适蛋白酶,采用单因素实验和响应面试验确定最佳酶解条件;氨基酸分析仪分析蛤蜊肽氨基酸组成;通过小鼠器官/体重比值、小鼠脾淋巴细胞转化实验、血清溶血素实验、小鼠腹腔巨噬细胞吞噬鸡红细胞实验、NK细胞活性实验评价蛤蜊肽的增强免疫活性。结果:菲律宾蛤仔蛋白肽制备的最适蛋白酶为胰蛋白酶,最佳酶解条件为温度48.4 ℃,pH8.0,加酶量3795 U/g,料液比1:2,水解时间4 h,该工艺下蛋白水解度达到15.33%,蛋白肽重均分子量为418 Da;其氨基酸组成合理,必需氨基酸占比达到41.48%;经口给予小鼠不同剂量的蛤蜊肽30 d,与空白对照组比较,小鼠的脏器比值无显著影响(P>0.05),低剂量(700 mg/(kg·d))与高剂量(2800 mg/(kg·d))下能显著提高血清溶血素水平(P<0.05),低剂量(700 mg/(kg·d))与中剂量(1400 mg/(kg·d))下能显著提高小鼠腹腔巨噬细胞吞噬鸡红细胞吞噬率(P<0.01),具有较好的增强免疫活性。结论:该方法下制备的蛤蜊肽水解程度较高、分子量低且分布集中,并具有一定增强免疫活性,具有开发成保健食品或特殊膳食食品的潜能。Abstract: Objective: Ruditapes philippinarum was used as raw material to investigate the preparation process of peptide and its enhanced immunomodulatory effect. Methods: The hydrolysis degree of protein was used as an evaluation index to screen the optimal protease. The single factor experiment and response surface test were used to determine the best enzymatic hydrolysis condition. The amino acid composition was analyzed using amino acid analyzer. And organ/body weight ratio, spleen lymphocyte transformation test, serum hemolysin experiment, peritoneal macrophage swallowing chicken red blood cell test, and NK cell activation experiment were used to assess the clam peptide enhanced immune activity. Results: Trypsin was the most suitable protease in the preparation of protein peptides from Ruditapes philippinarum. The optimal enzymatic conditions were temperature 48.4 ℃, pH8.0, enzyme concentration 3795 U/g, solid-liquid ratio 1:2, and hydrolysis time 4 hours. The average molecular weight of protein-peptide was 418 Da with 15.33% hydrolysis degree under optimal enzymatic conditions. The amino acid composition of the clam peptide was reasonable and the proportion of essential amino acids reached 41.48%. The organ ratio of BALB/c mice did not change significantly as compared to the control group after receiving various doses of oral clam peptides for 30 days. Furthermore, the serum hemolysin levels were significantly (P<0.05) increased of low dose (700 mg/(kg·d)) and high dose (2800 mg/(kg·d)) groups and the phagocytic rate of peritoneal macrophage swallowing chicken red blood cells was significantly (P<0.01) increased of low dose (700 mg/(kg·d)) and middle dose (1400 mg/(kg·d)) groups, which indicated the enhanced immunomodulatory effect of the clam peptide. Conclusions: The clam peptide produced using this process shows a high degree of hydrolysis, a low molecular weight, and a concentrated distribution with enhanced immune function. It has the potential to produce healthy foods or foods for special dietary uses.
-
表 1 六种蛋白酶酶解参数
Table 1. Enzymatic parameters of six proteases
酶种类 pH 温度(℃) 时间(h) 加酶量(U/g) 料液比 碱性蛋白酶 10 45 4 3000 1:3 中性蛋白酶 7 45 4 3000 1:3 胰酶 8 50 4 3000 1:3 复合蛋白酶 7 50 4 3000 1:3 风味蛋白酶 7 50 4 3000 1:3 木瓜蛋白酶 6.5 45 4 3000 1:3 表 2 响应面设计因素水平表
Table 2. Response surface design factor level table
水平 因素 A pH B 温度(℃) C 加酶量(U/g) −1 7 40 2000 0 8 50 3000 +1 9 60 4000 表 3 响应面试验结果
Table 3. Results of response surface experiment
试验号 A pH B 温度(℃) C 加酶量(U/g) D 水解度DH(%) 1 9 50 2000 9.41 2 7 50 2000 11.04 3 8 40 2000 6.64 4 8 50 3000 12.67 5 7 40 3000 9.41 6 8 60 4000 8.2 7 8 50 3000 12.79 8 8 50 3000 12.3 9 8 50 3000 14.6 10 8 60 2000 7.54 11 9 50 4000 12.79 12 7 50 4000 13.95 13 8 50 3000 14.11 14 9 40 3000 9.35 15 9 60 3000 8.57 16 7 60 3000 6.27 17 8 40 4000 13.93 表 4 回归模型的方差分析
Table 4. Analysis of variance of regression equation
来源 平方和 自由度 均方 F值 P值 显著 模型 133.26 9 14.81 5.35 0.0189 * A-pH 1.05 1 1.05 0.38 0.557 B-温度 21.62 1 21.62 7.82 0.0267 * C-加酶量 38.75 1 38.76 14.02 0.0072 ** AB 1.04 1 1.04 0.38 0.559 AC 0.058 1 0.058 0.021 0.8893 BC 10.99 1 10.99 3.97 0.0865 A2 0.056 1 0.056 0.02 0.8905 B2 56.97 1 56.97 20.6 0.0027 ** C2 1.22 1 1.22 0.44 0.5279 残差项 19.36 7 2.77 -- -- 失拟项 15.36 3 5.12 5.11 0.0744 纯误差 4.00 4 1.00 -- -- 总离差 152.62 16 -- -- -- 注:*表示显著P<0.05;**表示极显著P<0.01。 表 5 蛤蜊肽氨基酸分析
Table 5. The amino acid analysis of clam peptide
氨基酸种类 含量(%) 天门冬氨酸Asp 3.97 谷氨酸Glu 7.27 丙氨酸Ala# 3.88 甘氨酸Gly 4.73 胱氨酸Cys 0.74 脯氨酸Pro# 2.26 丝氨酸Ser 2.16 酪氨酸Tyr# 2.52 非必需氨基酸总量(NEAA) 27.53 组氨酸His* 1.28 精氨酸Arg* 4.15 半必需氨基酸总量(SEAA) 5.43 缬氨酸Val# 3.08 蛋氨酸Met# 1.32 苯丙氨酸Phe# 4.93 异亮氨酸Ile# 2.57 亮氨酸Leu# 4.21 赖氨酸Lys* 4.86 苏氨酸Thr 2.40 色氨酸Trp# 0.00 必需氨基酸总量(EAA) 23.37 疏水氨基酸总量(HAA) 24.77 正电荷氨基酸总量(PCAA) 10.29 氨基酸总量(TAA) 56.33 EAA/TAA 41.48 HAA/TAA 43.98 PCAA/TAA 18.26 注:#为疏水氨基酸,*为正电荷氨基酸。 表 6 蛤蜊肽对小鼠脏器指数的影响
Table 6. Effect of clam peptide on organ indices in mice
组别 脏器指数(%) 肝脏 脾 左肾 右肾 NC 4.36±0.33 0.44±0.05 0.76±0.05 0.78±0.05 PC 4.31±0.35 0.46±0.09 0.79±0.07 0.84±0.07 GL 4.08±0.29 0.46±0.04 0.80±0.05 0.81±0.05 GM 4.33±0.29 0.49±0.07 0.85±0.06 0.84±0.05 GH 4.41±0.38 0.43±0.06 0.85±0.07 0.85±0.08 -
[1] YAMASAKI Y, TAGA S, KISHIOKA M, et al. A metabolic profile in Ruditapes philippinarum associated with growth-promoting effects of alginate hydrolysates[J]. Scientific Reports,2016,6:23−29. doi: 10.1038/s41598-016-0029-9 [2] TAN Y, FANG L, QIU M, et al. Population genetics of the Manila clam (Ruditapes philippinarum) in East Asia[J]. Scientific Reports,2020,10(1):21890. doi: 10.1038/s41598-020-78923-w [3] 孙晓东, 谭书明. 木瓜蛋白酶酶解制备红岛蛤蜊肉多肽工艺的研究[J]. 贵州农业科学,2017,45(2):146−149. [SUN Xiaodong, TAN Shuming. Optimization of papain enzymolysis process for polypeptide preparation from clam meat[J]. Guizhou Agricultural Sciences,2017,45(2):146−149. doi: 10.3969/j.issn.1001-3601.2017.02.035 [4] YU Y, LIU H W, TU M L, et al. Mass spectrometry analysis and in silico prediction of allergenicity of peptides in tryptic hydrolysates of the proteins from Ruditapes philippinarum[J]. Journal of the Science of Food and Agriculture,2017,97(15):5114−5122. doi: 10.1002/jsfa.8389 [5] 曹廷锋, 刘金丽, 樊芳, 等. 红岛蛤蜊肉酶解工艺优化及其产物降血压功能研究[J]. 食品工业科技,2021,42(7):216−222. [CAO Tingfeng, LIU Jinli, FAN Fang, et al. Optimization of enzymatic hydrolysis of Hongdao clam and anti-hypertensive activity of the resulted products[J]. Science and Technology of Food Industry,2021,42(7):216−222. [6] 饶梦微, 章超桦, 林海生, 等. 菲律宾蛤仔肉不同提取物呈味特性[J]. 广东海洋大学学报,2022,42(1):90−97. [RAO Mengwei, ZHANG Chaohua, LIN Haisheng, et al. Sensory characteristic of different extracts from Ruditapes philippinarum[J]. Journal of Guangdong Ocean University,2022,42(1):90−97. [7] CHEUNG R C, NG T B, WONG J H. Marine peptides: Bioactivities and applications[J]. Marine Drugs,2015,13(7):4006−4043. doi: 10.3390/md13074006 [8] 杨贵兰, 秦松, 李文军, 等. 海洋生物活性肽的功能、制备技术与作用机制研究进展[J]. 海洋科学,2021,45(10):123−132. [YANG Guilan, QIN Song, LI Wenjun, et al. Function, preparation technology, and mechanism of marine biological active peptides[J]. Marine Sciences,2021,45(10):123−132. [9] RANASINGHE C, OZEMEK C, ARENA R. Exercise and well-be-ing during COVID 19-time to boost your immunit[J]. Expert Review of Anti-infective Therapy,2020,18(12):1195−1200. doi: 10.1080/14787210.2020.1794818 [10] 杨志艳, 惠婷婷, 李燕, 等. 海洋生物来源免疫调节活性肽的研究进展[J]. 食品与发酵工业,2022,48(8):289−295. [YANG Zhiyan, HUI Tingting, LI Yan, et al. Research progress of immunomodulatory peptides derived from marine organisms[J]. Food and Fermentation Industries,2022,48(8):289−295. [11] 袁学文, 王炎冰. 远东拟沙丁鱼低聚肽化学组成及其增强免疫力功能评价[J]. 食品与发酵工业,2018,44(4):104−110. [YUAN Xuewen, WANG Yanbing. Chemical composition of oligopeptide from Sardinops agax and its immunoregulatory activity evaluation[J]. Food and Fermentation Industries,2018,44(4):104−110. [12] 何丽霞, 陈启贺, 刘睿, 等. 海参寡肽免疫调节作用及机制研究[J]. 科技导报,2016,34(11):42−47. [HE Lixia, CHEN Qihe, LIU Rui, et al. Sea cucumber oligopeptides: Immunomodulatory effects and its mechanism[J]. Science & Techology Review,2016,34(11):42−47. [13] MOU J J, WANG C, LI Q, et al. Preparation and antioxidant properties of low molecular holothurian glycosaminoglycans by H2O2/ascorbic acid degradation[J]. International Journal of Biological Macromo-lecules,2018,107:1339−1347. doi: 10.1016/j.ijbiomac.2017.10.161 [14] YU Y, FAN F, WU D, et al. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum[J]. Molecules,2018,23(5):1189. doi: 10.3390/molecules23051189 [15] YUAN C Y, LIU P, HAN X, et al. Hypoglycemic effects of glycosaminoglycan from Urechis unicinctus in diabetic mice[J]. Journal of Medicinal Food,2015,18(2):190−194. doi: 10.1089/jmf.2013.3139 [16] PANDIAN V, ARAVINDAN N, SUBRAMANIAN S, et al. Lipid-lowering effect of molluscan (Katelysia opima) glycosaminoglycan (GAG) in hypercholesterolemic induced rats[J]. Biological Chemistry,2014,395(3):355−364. doi: 10.1515/hsz-2013-0214 [17] 史倩, 王晓洁, 蒋绍霞, 等. 中国蛤蜊精对小鼠体内外抗肿瘤作用的研究[J]. 时珍国医国药,2014,25(12):2877−2879. [SHI Qian, WANG Xiaojie, JIANG Shaoxia, et al. Antitumor effects of Chinese clam extract on mice in vitro and in vivo[J]. Lishizhen Medicine and Materia Medical Research,2014,25(12):2877−2879. [18] YANG D L, ZHANG Q Q, WANG Q, et al. A defensin-like antimicrobial peptide from the manila clam Ruditapes philippinarum: Investigation of the antibacterial activities and mode of action[J]. Fish and Shellfish Immunology,2018,80:274−280. doi: 10.1016/j.fsi.2018.06.019 [19] 付金霞, 赵隽, 李智博, 等. 杂色蛤酶解制备ACE抑制肽的工艺优化[J]. 农产品加工,2014(21):36−38, 41. [FU Jinxia, ZHAO Jun, LI Zhibo, et al. Hydrolyzation conditions of ACE inhibitory peptide from Ruditapes philippinarum[J]. Farm Products Processing,2014(21):36−38, 41. [20] 李皖光, 汪桃花, 王新文, 等. 4种大米蛋白水解度测定方法比较[J]. 粮食科技与经济,2017,42(5):35−37. [LI Wanguang, WANG Taohua, WANG Xinwen, et al. The comparison of four methods in testing degree of hydrolysis[J]. Grain Science and Technology and Economy,2017,42(5):35−37. [21] 国家市场监管总局. 关于公开征求《关于发布允许保健食品声称的保健功能目录 非营养素补充剂(2022年版)及配套文件的公告(征求意见稿)》意见的公告[EB/OL]. (2022-01-13). https://www.samr.gov.cn/hd/zjdc/202201/t20220113_339092.html.State Administration for Market Regulation. Notice for public solicitation of comments on the publication of supporting documents in the list of health functions that health food is allowed to claim, non-nutrient supplements (2022 edition) and supportive documents (draft for comment)[EB/OL]. (2022-01-13). https://www.samr.gov.cn/hd/zjdc/202201/t20220113_339092.html. [22] 赵峻露, 李春楠, 尹馨雪, 等. 响应面法优化鹿鞭肽酶解工艺及体外补肾健骨活性分析[J]. 食品工业科技,2023,44(2):213−221. [ZHAO Junlu, LI Chunnan, YIN Xinxue, et al. Optimization of the enzymatic hydrolysis process of Penis et Testis Cervi peptides by response surface methodology and analysis on the activity of tonifying kidney and strengthing bone in vitro[J]. Science and Technology of Food Industry,2023,44(2):213−221. [23] 李睿珺, 秦勇, 周雅琳, 等. 鹰嘴豆肽对免疫低下小鼠免疫功能的影响[J]. 食品科学,2020,41(21):133−139. [LI Ruijun, QIN Yong, ZHOU Yalin, et al. Effect of chickpea peptide on immune function of immunocompromised mice[J]. Food Science,2020,41(21):133−139. doi: 10.7506/spkx1002-6630-20191102-016 [24] 尹利端, 刘楚怡, 乔强, 等. 松花粉鳕鱼皮胶原肽复合物对小鼠免疫及抗氧化功能的影响[J]. 中国食品添加剂,2022,33(7):30−36. [YIN Liduan, LIU Chuyi, QIAO Qiang, et al. Effects of pine pollen combined with cod skin collagen peptides on immunity and antioxidant activity in mice[J]. China Food Additives,2022,33(7):30−36. [25] 李晋祯, 郑惠娜, 任鼎鼎, 等. 牡蛎低分子肽LOPs对短期免疫抑制小鼠的免疫调节作用[J/OL]. 中国食品学报, 2022-09-15. https://kns.cnki.net/kcms/detail/11.4528.TS.20220825.1613.002.html.LI Jinzhen, ZHENG Huina, REN Dingding, et al. Immunomodulatory effects of low molecular weight oyster peptides in short-term immunosuppressed mice[J/OL]. Journal of Chinese Institute of Food Science and Technology, 2022-09-15. https://kns.cnki.net/kcms/detail/11.4528.TS.20220825.1613.002.html. [26] 钟静诗, 王共明, 张健, 等. 仿刺参雌性生殖腺皂苷的免疫增强活性研究[J/OL]. 食品工业科技, 2022-06-23. DOI: 10.13386/j.issn1002-0306.2022030289.ZHONG Jingshi, WANG Gongming, ZHANG Jian, et al. Study on immune-enhancing activity of gonad saponins from female of Apostichopus japonicus[J/OL]. Science and Technology of Food Industry, 2022-06-23. DOI: 10.13386/j.issn1002-0306.2022030289. [27] LEE H E, YANG G, CHOI J S, et al. Suppression of primary splenocyte proliferation by Artemisia capillaris and its components[J]. Toxicology Research,2017,33(4):283−290. doi: 10.5487/TR.2017.33.4.283 [28] YANG R Y, PEI X R, WANG J B, et al. Protective effect of a marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) on radiation-induced immune suppression in mice[J]. Journal of the Science of Food Agriculture,2010,90(13):2241−2248. doi: 10.1002/jsfa.4077 [29] 乐卿清, 廖翼江, 汤桂秋, 等. 海参肽提高免疫力的功效评价[J]. 现代食品,2021(10):111−114. [LE Qinqing, LIAO Yijiang, TANG Guiqiu, et al. Evaluation of the efficacy of sea cucumber peptides in improving immunity[J]. Modern Food,2021(10):111−114. [30] CIAN R E, LÓPEZ-POSADAS R, DRAGO S R, et al. A porphyra columbina hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-κB, and p38 and JNK dependent mechanism[J]. Food Chemistry,2012,134(4):1982−1990. doi: 10.1016/j.foodchem.2012.03.134 [31] ZANG X X, QIAN B C, LIU J. Effects of immunoagents on circulating serum hemolysin formation in bone marrow and spleen[J]. Zhongguo Yao Li Xue Bao,1990,11(5):477−80. [32] 陈金龙, 张月巧, 袁娅, 等. 植物多糖通过 NF-κB信号通路对巨噬细胞的免疫调节作用研究进展[J]. 食品科学,2015,36(23):288−294. [CHEN Jinlong, ZHANG Yueqiao, YUAN Ya, et al. Progress in research on immune-regulatory effects of plant polysaccharides on macrophages through NF-κB signaling pathway[J]. Food Science,2015,36(23):288−294. doi: 10.7506/spkx1002-6630-201523053 [33] KIM Y S, AHN C B, JE J Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways[J]. Food Chemistry,2016,202:9−14. doi: 10.1016/j.foodchem.2016.01.114 [34] 叶盛旺, 杨最素, 李维, 等. 青蛤酶解多肽对RAW264.7巨噬细胞的免疫调节作用[J]. 食品科学,2019,40(7):185−191. [YE Shengwang, YANG Zuisu, LI Wei, et al. Immunomodulatory effects of peptides from enzymatic hydrolysate of Cyclina sinensis on RAW264.7 macrophages[J]. Food Science,2019,40(7):185−191. doi: 10.7506/spkx1002-6630-20171214-163 [35] 孙佳鑫, 侯明星. 促吞噬肽免疫学机制的研究进展[J]. 世界最新医学信息文摘,2018,18(16):53−54, 57. [SUN Jiaxin, HOU Mingxing. The advances of tuftsin on immunological mechanisms[J]. World Latest Medicine Information,2018,18(16):53−54, 57. [36] TERRÉN I, ORRANTIA A, VITALLÉ J, et al. NK cell metabolism and tumor microenvironment[J]. Frontiers in Immunology,2019,10:2278. doi: 10.3389/fimmu.2019.02278 [37] BIGGER J E, THOMAS C A, ATHERTON S S. NK cell modulation of murine cytomegalovirus retinitis[J]. Journal of Immunology,1998,160(12):5826−5831. doi: 10.4049/jimmunol.160.12.5826 [38] 刁静静. 绿豆肽对小鼠巨噬细胞免疫活性的影响及其作用机制[D]. 大庆: 黑龙江八一农垦大学, 2019.DIAO Jingjing. Immunomdulatory activity and mechanism of mung bean peptides on macrophage[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. [39] 李富强, 张廷新, 朱丽萍, 等. 食物蛋白源免疫调节肽研究进展[J]. 食品与发酵工业,2021,48(1):308−314. [LI Fuqiang, ZHANG Tingxin, ZHU Liping, et al. Advance of immunomodulatory peptides from dietary-protein source[J]. Food and Fermentation Industries,2021,48(1):308−314.