Effects of Peptides from Acetes chinensis on Immunoregulation in Immunocompromised Mice
-
摘要: 本文以毛虾为原料,采用蛋白酶酶解获得毛虾活性肽,通过建立免疫抑制小鼠模型探究了毛虾活性肽对免疫抑制小鼠的免疫调节功能。小鼠随机分为六组:正常对照组、模型组、阳性对照组以及低、中、高剂量组,其中剂量组分别灌胃0.25 g·kg−1 BW、0.5 g·kg−1 BW、1.0 g·kg−1 BW毛虾活性肽。结果表明,剂量组免疫抑制小鼠体重明显增加(P<0.05),免疫器官指数中的胸腺指数显著提高(P<0.05),此外,毛虾活性肽还促进了小鼠血清中免疫球蛋白(IgA、IgG和IgM)以及细胞因子(IL-2、IL-6和TNF-α)水平的提升(P<0.05),外周血白细胞总数基本恢复至正常水平,NK细胞活性也显著增强(P<0.05)。综上,毛虾活性肽具有改善免疫抑制剂导致的免疫功能损伤,增强免疫抑制小鼠免疫调节的作用。Abstract: In this paper, the active peptides were obtained from Acetes chinensis with protease, and then the immunoregulatory function and mechanism of them on the immunosuppressed mice were explored by establishing an immunosuppressive mouse model. Mice were randomly divided into six groups: Normal control group, model group, positive control group and low, medium and high dose groups, among which, the dose groups were given 0.25 g· kg−1 BW, 0.5 g·kg−1 BW, 1.0 g·kg−1 BW A. chinensis active peptide. The results showed that the body weight of the immunosuppressed mice in dosegroups was significantly increased (P<0.05), and the thymus index of the immune organ indexes were remarkably improved (P<0.05) after being stimulated by the active peptides of Acetes chinensis. The serum levels of immunoglobulins (IgA, IgG, and IgM) and cytokines (IL-2, IL-6, and TNF-α) in mice were enhanced (P<0.05), and the total number of peripheral blood leukocytes was increased. In addition, NK cells activity was also significantly enhanced (P<0.05). To sum up, the active peptides of A. chinensis could improve the immune function damage caused by immunosuppression, and the immunoregulatory function of immunosuppressed mice.
-
Key words:
- Acetes chinensis /
- enzymatic hydrolysis /
- immunosuppressed mice /
- immunoregulation
-
表 1 毛虾活性肽对免疫抑制小鼠体重和免疫器官指数的影响
Table 1. Effects of peptides from A. chinensis on the body weight and immune organ index in immunosuppressed mice
组别 初体重(g) 建模后体重(g) 终体重(g) 胸腺指数(mg·g−1) 脾脏指数(mg·g−1) 正常对照组 18.69±0.95 18.94±0.78 19.26±0.79 1.51±0.24 5.62±0.28 模型组 18.69±0.71 17.59±1.13* 18.97±0.63 1.31±0.37* 4.58±0.22 阳性对照组 18.91±0.60 17.47±1.02 19.38±0.62 1.69±0.26## 5.44±0.27 低剂量组 18.95±0.95 17.72±1.28 19.75±0.78 1.67±0.23## 5.43±0.47 中剂量组 17.90±0.53 16.79±0.83 19.93±0.37# 1.57±0.23# 5.17±0.55 高剂量组 18.32±0.65 17.21±1.18 20.32±0.92# 1.69±0.44## 5.00±0.76 注:*、**、***分别表示模型组与正常对照组比较具有统计学差异(P<0.05)、具有显著统计学差异(P<0.01)、具有极显著统计学差异(P<0.001);#、##、###分别表示阳性对照组和剂量组与模型组比较具有统计学差异(P<0.05)、具有显著统计学差异(P<0.01)、具有极显著统计学差异(P<0.001);Δ、ΔΔ、ΔΔΔ分别表示阳性与剂量组比较具有统计学差异(P<0.05)、具有显著统计学差异(P<0.01)、具有极显著统计学差异(P<0.001);图1~图3、表2同。 表 2 毛虾活性肽对免疫抑制小鼠外周血白细胞数量的影响
Table 2. Effect of peptides from A. chinensis on the number of peripheral blood leukocytes in immunosuppressed mice
组别 正常
对照组模型组 阳性
对照组低剂
量组中剂
量组高剂
量组白细胞数量
(109/L)8.83±
0.226.56±
0.32***8.28±
0.45##8.59±
0.34##8.8±
0.56##8.69±
0.48## -
[1] LOZANO-OJALVO D, MOLINA E, LÓPEZ-FANDIÑO R. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells[J]. Food Funct,2016,7(2):1048−1056. doi: 10.1039/C5FO00614G [2] MA J J, MAO X Y, WANG Q, et al. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate[J]. LWT-Food Science and Technology,2014,56(2):296−302. doi: 10.1016/j.lwt.2013.12.019 [3] KARNJANAPRATUM S, O'CALLAGHAN Y C, BENJAKUL S, et al. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin[J]. Journal of the Science of Food and Agriculture,2016,96(9):3220−3226. doi: 10.1002/jsfa.7504 [4] CAI B N, PAN J Y, WU Y T, et al. Immune functional impacts of oyster peptide-based enteral nutrition formula (OPENF) on mice: a pilot study[J]. Chinese Journal of Oceanology and Limnology,2013,31(4):813−820. doi: 10.1007/s00343-013-2311-z [5] 丁霈希, 章超桦, 高加龙, 等. 等边浅蛤肉酶解产物超滤组分免疫调节作用[J]. 广东海洋大学学报,2020,40(3):114−121. [DING P X, ZHANG C H, GAO J L, et al. Immunomodulatory effects of the ultrafiltration fractions of enzymatic hydrolysates from the edible part of Gomphina aequilatera[J]. Journal of Guangdong Ocean University,2020,40(3):114−121. doi: 10.3969/j.issn.1673-9159.2020.03.015 [6] 王敏, 卢赛, 张曾亮, 等. 鲍鱼水解肽的抗氧化、抗炎及免疫调节作用[J]. 食品工业科技,2021,42(5):282−288. [WANG M, LU S, ZHANG Z L, et al. Antioxidant, anti-inflammatory and immunomodulatory effects of abalone hydrolytic peptide[J]. Science and Technology of Food Industry,2021,42(5):282−288. [7] 乐卿清, 廖翼江, 汤桂秋, 等. 海参肽提高免疫力的功效评价[J]. 现代食品,2021(10):111−114. [LE Q Q, LIAO Y J, TANG G J, et al. Evaluation of the efficacy of sea cucumber peptides in improving immunity[J]. Modern Food,2021(10):111−114. [8] 许丹, 林峰, 朱小语, 等. 牡蛎肽对免疫抑制小鼠免疫功能的影响[J]. 北京大学学报(医学版),2016,48(3):392−397. [XU D, LIN F, ZHU X Y, et al. Immunomodulatory effect of oyster peptide on immunosuppressed mice[J]. Journal of Peking University(Health Sciences),2016,48(3):392−397. doi: 10.3969/j.issn.1671-167X.2016.03.003 [9] SHINNAR A E, BUTLER K L, PARK H J. CATHELICIDIN family of antimicrobial peptides: Proteolytic processing and protese resistance[J]. Bioorganic Chemistry,2003,31(6):425−436. doi: 10.1016/S0045-2068(03)00080-4 [10] PHYO Y Z, RIBEIRO J, FERNANDES C, et al. Marine natural peptides: Determination of absolute configuration using liquid chromatography methods and evaluation of bioactivities[J]. Molecules,2018,23:306. doi: 10.3390/molecules23020306 [11] VLIEGHE P, lISOWSKI V, MARTINEZ J, et al. Synthetic therapeutic peptides: Science and market[J]. Drug Discovery Today,2009,15(1-2):40−56. [12] FOSGERAU K, HOFFMANN T. Peptide therapeutics: Current status and future directions[J]. Drug Discovery Today,2015,20(1):122−128. doi: 10.1016/j.drudis.2014.10.003 [13] HE H, CHEN X, SUN C, et al. Preparation and functional evaluation of oligopeptide-nriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011[J]. Bioresource Technology,2006,97(3):385−390. doi: 10.1016/j.biortech.2005.03.016 [14] 曹文红, 章超桦, 吉宏武, 等. 酶解中国毛虾制备清除羟自由基活性产物的研究[J]. 食品工业科技,2007(12):110−113. [CAO W H, ZHANG C H, JI H W, et al. Study on the preparation of hydroxyl radical scavenging active products by enzymatic hydrolysis of Acetes chinensis[J]. Science and Technology of Food Industry,2007(12):110−113. [15] JIANG Z, TIAN R, BRODKORB R, et al. Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein[J]. Food Chemistry,2010,123(3):779−786. doi: 10.1016/j.foodchem.2010.05.026 [16] MENG M, GUO M Z, FENG C C, et al. Watersoluble polysaccharides from Grifola frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal trans duction pathways[J]. Food & Function,2019,10(8):4998−5007. [17] 叶雪丹, 徐彤彤, 陆园园, 等. 盐酸左旋咪唑对免疫低下小鼠免疫功能的影响[J]. 中国临床药理学杂志,2019,35(6):550−552,570. [YE X D, XU D D, LU Y Y, et al. Effect of levamisole hydrochloride on the immune function in immunosuppressed mice[J]. The Chinese Journal of Clinical Pharmacology,2019,35(6):550−552,570. [18] 李睿珺, 秦勇, 周雅琳, 等. 鹰嘴豆肽对免疫低下小鼠免疫功能的影响[J]. 食品科学,2020,41(21):133−139. [LI R J, QIN Y, ZHOU Y L, et al. Effect of chickpea peptide on immune function of immunocompromised mice[J]. Food Science,2020,41(21):133−139. doi: 10.7506/spkx1002-6630-20191102-016 [19] 乔石, 闵思明, 甘思言, 等. 太子参参须多糖对免疫抑制小鼠脾脏损伤的修复作用研究[J]. 中国预防兽医学报,2021,43(9):991−997. [QIAO S, MIN S M, GAN S Y, et al. Repairing effect of Radix Pseudostellariae fibrous root polysaccharides on spleen injury in immunosuppressed mice[J]. Chinese Journal of Preventive Veterinary Medicine,2021,43(9):991−997. [20] 王蓉, 李胜男, 陈春, 等. 沙棘多糖对巨噬细胞和免疫抑制小鼠的免疫调节作用研究[J]. 中南药学,2020,18(3):384−388. [WANG R, LI S N, CHEN C, et al. Immunomodulatory effect of hippophae rhamnoides polysaccharide on the macrophages and cyclophosphamide-induced immunocompromised mice[J]. Central South Pharmacy,2020,18(3):384−388. doi: 10.7539/j.issn.1672-2981.2020.03.009 [21] 伍维高, 钟金凤. 环磷酰胺构建动物免疫抑制模型的研究进展[J]. 中国兽医杂志,2019,55(2):87−89. [WU W G, ZHONG J F. Research progress on the establishment of animal immunosuppression model with cyclophosphamide[J]. Chinese Journal of Veterinary Medicine,2019,55(2):87−89. [22] 王亚非, 于淼淼, 于悦, 等. 鹰嘴豆多肽的免疫活性研究[J]. 西北农林科技大学学报(自然科学版),2021,49(12):127−136. [WANG Y F, YU M M, YU Y, et al. Immunological activity of chickpea polypeptides[J]. Journal of Northwest A & F University (Natural Science Edition),2021,49(12):127−136. [23] 宋雁, 贾旭东, 崔文明, 等. 不同途径和剂量环磷酰胺建立小鼠免疫抑制模型的对比研究[J]. 中国食品卫生杂志,2013,25(3):218−225. [SONG Y, JIA X D, CUI W M, et al. Comparison research of immunosuppression models induced by different ways and doses of cyclophosphamide in mice[J]. Chinese Journal of Food Hygiene,2013,25(3):218−225. [24] 胡旭阳. 日本黄姑鱼肉活性肽的制备及其免疫调节作用研究[D]. 舟山: 浙江海洋大学, 2019.HU X Y. Study on the preparation and immunomodulatory effect of active peptide from Nibea japonica[D]. Zhoushan: Zhejiang Ocean University, 2019. [25] 谢天宇, 胡红莲, 高民. 肠黏膜免疫屏障及其保护措施[J]. 动物营养学报,2014,26(5):1157−1163. [XIE T Y, HU H L, GAO M. Gut mucosal immune barrier and the protective measures[J]. Chinese Journal of Animal Nutrition,2014,26(5):1157−1163. doi: 10.3969/j.issn.1006-267x.2014.05.005 [26] 王煜, 李芹, 王玉海, 等. 金线莲液在改善环磷酰胺致免疫抑制小鼠免疫功能中的作用研究[J]. 医学理论与实践,2017,30(22):3293−3295, 3304. [WANG Y, LI Q, WANG Y H, et al. Study on Effect of Anoectochilus roburghii on improving immune function in mice immunized by cyclophosphamide[J]. The Journal of Medical Theory and Practice,2017,30(22):3293−3295, 3304. [27] 穆杨, 周恩民. 抗独特型抗体研究进展[J]. 中国免疫学杂志,2016,32(11):1691−1698. [MU Y, ZHOU E M. Advances in research of anti-idiotypic antibody[J]. Chinese Journal of Immunology,2016,32(11):1691−1698. doi: 10.3969/j.issn.1000-484X.2016.11.027 [28] 孟菲, 宗雯雯, 王纯, 等. 日本虫草子实体多糖抗氧化及免疫调节作用[J]. 菌物学报,2020,39(7):1391−1399. [MENG F, ZONG W W, WANG C, et al. Antioxidant activities and immunomodulatory effects of the polysaccharides from fruiting bodies of Cordyceps japonica[J]. Mycosystema,2020,39(7):1391−1399. [29] 淮文英, 杨福权, 唐玉琴, 等. 表观遗传学调控Th细胞分化发育的研究进展[J]. 生物学杂志,2016,33(4):70−72. [HUAI W Y, YANG F Q, TANG Y Q, et al. The research progress of epigenetic regulation of T helper cell differentiation[J]. Journal of Biology,2016,33(4):70−72. [30] 刘淑集, 许旻, 苏永昌, 等. 牡蛎寡肽对免疫低下小鼠模型免疫功能的影响[J]. 华南师范大学学报(自然科学版),2018,50(2):70−76. [LIU S J, XU M, SU Y C, et al. Effect of oyster oligopeptide on immunologic function in immunosuppressive mice[J]. Journal of South China Normal University(Natural Science Edition),2018,50(2):70−76.