留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bacillus sp. B110胞内麦芽糖淀粉酶基因克隆与酶学特性

刘霞 戴隆华 黄珍 吴小花 王飞

刘霞,戴隆华,黄珍,等. Bacillus sp. B110胞内麦芽糖淀粉酶基因克隆与酶学特性[J]. 食品工业科技,2023,44(10):123−129. doi: 10.13386/j.issn1002-0306.2022080183
引用本文: 刘霞,戴隆华,黄珍,等. Bacillus sp. B110胞内麦芽糖淀粉酶基因克隆与酶学特性[J]. 食品工业科技,2023,44(10):123−129. doi: 10.13386/j.issn1002-0306.2022080183
LIU Xia, DAI Longhua, HUANG Zhen, et al. Gene Cloning and Enzymatic Properties of an Intracellular Maltogenic Amylase from Bacillus sp. B110[J]. Science and Technology of Food Industry, 2023, 44(10): 123−129. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080183
Citation: LIU Xia, DAI Longhua, HUANG Zhen, et al. Gene Cloning and Enzymatic Properties of an Intracellular Maltogenic Amylase from Bacillus sp. B110[J]. Science and Technology of Food Industry, 2023, 44(10): 123−129. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080183

Bacillus sp. B110胞内麦芽糖淀粉酶基因克隆与酶学特性

doi: 10.13386/j.issn1002-0306.2022080183
基金项目: 国家自然科学基金项目(31560031);江西省教育厅科学技术研究项目(GJJ160387)。
详细信息
    作者简介:

    刘霞(1983−),女,硕士,副教授,研究方向:食品微生物,E-mail:25963535@qq.com

    通讯作者:

    王飞(1976−),男,博士,副教授,研究方向:微生物资源与蛋白质工程,E-mail:wangfei179@163.com

  • 中图分类号: Q933

Gene Cloning and Enzymatic Properties of an Intracellular Maltogenic Amylase from Bacillus sp. B110

  • 摘要: 目的:对菌株Bacillus sp. B110的胞内麦芽糖淀粉酶BMAL进行基因克隆、异源表达、纯化及酶学性质研究,为后期开发新的淀粉加工用酶打下基础。方法:使用PCR技术对Bacillus sp. B110的胞内麦芽糖淀粉酶bmal基因序列进行全长克隆,异源表达,使用Ni2+-NTA进行纯化,再对其酶学特性进行测定,使用序列分析工具BioEdit、MEGA等对其氨基酸序列进行分析,使用AlphaFold2对其三级结构进行预测分析。结果:BMAL基因全长1770 bp,编码一个589氨基酸残基的蛋白。重组酶rBMAL经Ni2+-NTA亲和层析纯化后,SDS-PAGE电泳结果显示其分子量大小为63 kDa。氨基酸序列分析和三维建模表明BMAL与来源于B.subtilis 168和B.subtilis SUH4-2的麦芽糖淀粉酶有较高的一致性,且BMAL具有一个麦芽糖淀粉酶所独有的N端结构域以及由Asp328-Glu357-Asp424三个氨基酸残基所构成的催化中心。重组酶rBMAL最适反应温度为45 ℃,最适反应pH为6.0。重组酶rBMAL在30 ℃条件下保藏7 h残留酶活为60%,但在60 ℃条件下保藏2 h残留酶活力下降98%,说明BMAL对热敏感。重组酶rBMAL在4 ℃,pH7.0~9.5保藏12 h活性稳定。当存在1 mmol/L的金属离子Mg2+时,重组酶rBMAL活力提高36%,而Ni2+、Fe3+、Co2+、Cu2+、Zn2+、Al3+、Ca2+对重组酶rBMAL有抑制作用,酶活力减少85%~48%。有机溶剂和化学试剂甲醇、乙醇、丙酮、异腈、EDTA和SDS对重组酶rBMAL有较强的抑制作用,酶活力减少至32.3%~64.8%。底物特异性实验结果证实BMAL最适底物为环精糊。结论:Bacillus sp. B110的胞内麦芽糖淀粉酶BMAL具有良好的催化特性和pH稳定性,在面包烘焙工业上具有潜在的应用价值。

     

  • 图  麦芽糖淀粉酶基因BMAL的克隆

    注:M1:DNA分子量标准;1:PCR产物。

    Figure  1.  Cloning of the BMAL gene

    图  纯化BMAL的SDS-PAGE分析

    注:1.蛋白分子质量标准;2.总蛋白;3. 50 mmol/L咪唑洗脱液;4. 50 mmol/L咪唑洗脱液;5. 200 mmol/L咪唑洗脱液。

    Figure  2.  SDS-PAGE analysis of the purified BMAL

    图  邻接法构建BMAL和其它来源环糊精酶的系统发育树

    Figure  3.  Phylogenetic tree of BMAL and related CDases obtained from different sources constructed by the neighbor-joining method

    图  BMAL的三维结构图

    注:a.BMAL飘带图;b.BMAL与底物麦芽六糖分子对接;c.BMAL与潘糖分子对接图;d.活性中心。

    Figure  4.  3D structure of BMAL

    图  pH和温度对重组酶rBMAL的影响

    注:a. rBMAL的最适反应pH;b. rBMAL在不同pH缓冲液中的稳定性;c. rBMAL的最适反应温度; d.rBMAL的温度稳定性。

    Figure  5.  Effects of pH and temperature on the recombinant rBMAL

    表  1  金属离子和化学试剂对重组酶rBMAL酶活力的影响

    Table  1.   Effect of metal ions and chemical reagents on the activity of rBMAL

    金属离子(1 mmol/L)相对酶活(%)化学试剂相对酶活(%)
    CK100±1.22bCK100.00±6.94a
    Al3+34.04±0.32deMethanol32.33±3.75f
    Fe3+23.29±3.10fEthanol55.43±4.67e
    Zn2+36.80±1.82dAcetone58.96±4.45de
    Co2+15.00±3.01gIsopropanol54.22±0.82e
    Cu2+26.15±3.35fAcetonitrile67.00±3.21c
    Ni2+31.14±4.60eSDS80.80±2.43b
    K+56.10±1.81cTween 8098.53±3.64a
    Mn2+98.91±1.08bTritonX-10097.94±4.56a
    Mg2+136.77±0.41aEDTA63.82±3.37cd
    Ca2+52.23±1.82c
    注:采用邓肯氏新复极差法检验进行统计分析,不同小写字母表示差异显著,P<0.05。
    下载: 导出CSV

    表  2  重组酶rBMAL的动学常数

    Table  2.   Apparent kinetic constants of rBMAL

    底物 单位酶活
    (U·mg−1
    Km
    (mg·mL−1
    kcat
    (s−1
    kcat/Km
    (mL·mg−1·s−1
    可溶性淀粉32.520.2143.337.10
    直链淀粉2415.89119.077.49
    普鲁兰糖68.23.35302.0990.18
    β-环糊精852.85374.85131.53
    下载: 导出CSV
  • [1] MABROUK S B, MESSAOND E B, AYADI D, et al. Cloning and sequencing of an original gene encoding a maltogenic amylase from Bacillus sp. US149 strain and characterization of the recombinant activity[J]. Mol Biotechnol,2008,38(3):211−219. doi: 10.1007/s12033-007-9017-4
    [2] HWA P K, JIP K T, KYOU C T, et al. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family[J]. Biochimica Et Biophysica Acta,2000,1478(2):165−185. doi: 10.1016/S0167-4838(00)00041-8
    [3] LI D, PARK S H, SHIM J H, et al. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase[J]. Carbohydrate Research,2004,339(17):2789−2797. doi: 10.1016/j.carres.2004.09.017
    [4] KOLCUOGLU Y, COLAK A, FAIZ O, et al. Cloning, expression and characterization of highly thermo- and pH-stable maltogenic amylase from a thermophilic bacterium Geobacillus caldoxylosilyticus TK4[J]. Process Biochemistry,2010,45(6):821−828. doi: 10.1016/j.procbio.2010.02.001
    [5] CHEN X, ZHANG L, LI X, et al. Impact of maltogenic α-amylase on the structure of potato starch and its retrogradation properties[J]. Int J Biol Macromol,2020,145:325−331. doi: 10.1016/j.ijbiomac.2019.12.098
    [6] RUAN Y, XU Y, ZHANG W, et al. A new maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life[J]. Food Chemistry,2020,344(15):128599.
    [7] HAGHIGHAT K S, KASAAI M R, MILANI J M, et al. Optimization of encapsulation of maltogenic amylase into a mixture of maltodextrin and beeswax and its application in gluten-free bread[J]. Journal of Texture Studies,2020,51(4):631−641. doi: 10.1111/jtxs.12516
    [8] CHA H J, YOON H G, KIM Y W, et al. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose[J]. European Journal of Biochemistry,1998,253(1):251−262. doi: 10.1046/j.1432-1327.1998.2530251.x
    [9] LEE H S, KIM M S, CHO H S, et al. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other[J]. Journal of Biological Chemistry,2002,277(24):21891−21897. doi: 10.1074/jbc.M201623200
    [10] CHO H Y, KIM Y W, KIM T J, et al. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2[J]. Biochimica et Biophysica Acta,2000,1478(2):333−340. doi: 10.1016/S0167-4838(00)00037-6
    [11] WANG Y C, HU H F, MA J W, et al. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry[J]. Food Chem,2020,305:125447. doi: 10.1016/j.foodchem.2019.125447
    [12] FINCAN S A, ÖZDEMIR S, KARAKAYA A, et al. Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch[J]. Life Sci,2021,264:118639. doi: 10.1016/j.lfs.2020.118639
    [13] JIN S B, MYO J K, HYUNJU C, et al. Enhanced transglycosylation activity of thermus maltogenic amylase in acetone solution[J]. Food Science & Biotechnology,2003,12(6):639−643.
    [14] KWON K S, AUH J H, CHOI S K, et al. Characterization of branched oligosaccharides produced by Bacillus licheniformis maltogenic amylase[J]. Journal of Food Science,1999,64(2):258−261. doi: 10.1111/j.1365-2621.1999.tb15878.x
    [15] JUNG W K, YUNG H K, HEE S L, et al. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1[J]. Biochimica et Biophysica Acta,2007,1774(5):661−669. doi: 10.1016/j.bbapap.2007.03.010
    [16] OH K W, KIM M J, KIM H Y, et al. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli[J]. FEMS Microbiology Letters,2005,252(1):175−181. doi: 10.1016/j.femsle.2005.08.050
    [17] JI H, LI X, JIANG T, et al. A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20[J]. Food Bioscience,2022,45:101498. doi: 10.1016/j.fbio.2021.101498
    [18] ZHOU J, LI Z, ZHANG H, et al. Novel maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the conversion of maltooligosaccharides and soluble starch to maltose[J]. Appl Environ Microbiol,2018,84(14):e00152−18.
    [19] HUANG Z, NI G, WANG F, et al. Characterization of a thermostable lichenase from Bacillus subtilis B110 and its effects on β-glucan hydrolysis[J]. Journal of Microbiology and Biotechnology,2022,32(4):484−492. doi: 10.4014/jmb.2111.11017
    [20] 陈允妲, 李雪亮, 赵晓艳, 等. Streptomyces lavendulae X33海藻糖合酶基因克隆及酶学特性[J]. 江西农业大学学报,2021,43(4):901−909. [CHEN Y D, LI X L, ZHAO X Y, et al. Cloning and characterization of trehalose synthase gene of Streptomyces lavendulae X33[J]. Journal of Jiangxi Agricultural University,2021,43(4):901−909.
    [21] BOULANGER P. Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles[J]. Methods in Molecular Biology,2009,502:227−238.
    [22] M M BRADFORD. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1−2):248−254. doi: 10.1016/0003-2697(76)90527-3
    [23] MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Biochemistry,1959,31(3):426−428.
    [24] 李钰娜, 宋英达, 任晨霞. Bacillus sp. L1胞外蛋白酶EL1基因克隆及酶学性质分析[J]. 食品工业科技,2020,41(5):119−123. [[LI Y N, SONG Y D, REN C X. Cloning and characterization of extracellular protease EL1 gene of Bacillus sp. L1[J]. Science and Technology of Food Industry,2020,41(5):119−123.
    [25] KUNST F, OGASAWARA N, MOSZER I, et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis[J]. Nature,1997,390(6657):249−256. doi: 10.1038/36786
    [26] JUNG T Y, LI D, PARK J T, et al. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus[J]. Journal of Biological Chemistry,2012,287(11):7979−7989. doi: 10.1074/jbc.M111.304774
    [27] KIM I C, CHA J H, KIM J R, et al. Catalytic properties of the cloned amylase from Bacillus licheniformis[J]. Journal of Biological Chemistry,1992,267(31):22108−22114. doi: 10.1016/S0021-9258(18)41642-0
    [28] OHDAN K, KURIKI T, TAKATA H, et al. Cloning of the cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. A2-5a and analysis of the raw starch-binding domain[J]. Applied Microbiology Biotechnology,2000,53(4):430−434. doi: 10.1007/s002530051637
    [29] HONDOH H, KURIKI T, MATSUURA Y. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase[J]. Journal of Molecular Biology,2003,326(1):177−188. doi: 10.1016/S0022-2836(02)01402-X
    [30] KIM J S, CHA S S, KIM H J, et al. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility[J]. Journal of Biological Chemistry,1999,274(37):26279−26286. doi: 10.1074/jbc.274.37.26279
    [31] AROOB I, AHMAD N, ASLAM M, et al. A highly active α-cyclodextrin preferring cyclomaltodextrinase from Geobacillus thermopakistaniensis[J]. Carbohydrate Research,2019:4811−4818.
    [32] RUAN Y, ZHANG R, XU Y. Directed evolution of maltogenic amylase from Bacillus licheniformis R-53: Enhancing activity and thermostability improves bread quality and extends shelf life[J]. Food Chem,2022,381:132222. doi: 10.1016/j.foodchem.2022.132222
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  67
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回