Regulating Effects of Dietary Fiber and Powder of Agaricus bisporus Based on in Vitro Fermentation on Human Gut Microbiota
-
摘要: 目的:探究双胞菇膳食纤维以及双胞菇粉对肠道菌群的调节功能。方法:通过水提醇沉的方法提取双胞菇膳食纤维和双胞菇粉末进行肠道微生物体外发酵,测定代谢产物中pH、产气量、短链脂肪酸的含量,采用IlluminaPE250测序平台对粪便微生物V4区进行富集测序,探究双胞菇膳食纤维和双胞菇粉对于肠道菌群中短链脂肪酸产生菌相对丰度的影响。结果:以低聚果糖为阳性对照组,不加膳食纤维为空白对照组,体外发酵过程中,随着时间的增加,双胞菇膳食纤维组pH从6.93下降到4.48,双胞菇粉末pH从6.93下降至4.86;随着时间的增加,与空白组相比,双胞菇膳食纤维组和双胞菇粉末组的产气量分别增加了3.4和1.9 mL;在体外发酵24 h后发现,与阳性对照组相比,双胞菇膳食纤维组和双胞菇粉末组的肠道菌群丰富度和多样性更高;双胞菇膳食纤维组和双胞菇粉末组均能被肠道微生物利用产生短链脂肪酸,与空白组相比,双胞菇膳食纤维组更有利于被肠道微生物利用产生乙酸(34.3 mmol/L)和丙酸(7.6 mmol/L),促进有益菌属双歧杆菌属的生长,双胞菇粉末组更有利于产生乙酸(39.4 mmol/L),促进肠杆菌属的生长;与阳性对照组相比,双胞菇膳食纤维组和双胞菇粉末组的丙酸产量更高。结论:双胞菇膳食纤维和双胞菇粉末均能被肠道菌群有效利用,产生短链脂肪酸,提高有益菌的相对丰度,与空白组相比,添加双胞菇膳食纤维的实验组效果最佳,对人体肠道菌群存在有效的益生调节功能。Abstract: Objective: To explore the regulating function of the dietary fiber of Agaricus bisporus and the powder of Agaricus bisporus on the human gut microbiota. Methods: Dietary fiber of Agaricus bisporus were extracted by water extraction and alcohol precipitation for human gut microbial fermentation in vitro. The pH, gas production and short-chain fatty acid contents of metabolites were determined. The V4 region of fecal microorganisms was enriched and sequenced by IlluminaPE250 sequencing platform. Results: Taking fructo-oligosaccharide as the positive control group and without dietary fiber as the blank control group, during the in vitro fermentation process, with the increase of time, the pH value of the Agaricus bisporus dietary fiber group decreased from 6.93 to 4.48, and the pH value of the powder of Agaricus bisporus decreased from 6.93 to 4.86. With the increasing of time, compared with the blank group, the gas production of the Agaricus bisporus dietary fiber group and the powder of Agaricus bisporus group increased by 3.4 and 1.9 mL. After 24 hours of in vitro fermentation, it was found that compared with the positive control group, the richness and diversity of the human gut microbiota in the Agaricus bisporus dietary fiber group and the powder of Agaricus bisporus group were relatively higher. Compared with the blank group, dietary fiber of Agaricus bisporus group was more conducive to the production of acetic acid (34.3 mmol/L) and propionic acid (7.6 mmol/L) by human gut microbiota and promoted the growth of beneficial bacteria of Bifidobacterium. The powder of Agaricus bisporus group was more conducive to producing acetic acid (39.4 mmol/L) and promoting the growth of Enterobacter. Compared with the positive control group, the production of propionic acid in the Agaricus bisporus dietary fiber group and the powder of Agaricus bisporus group was relatively higher. Conclusion: Both the dietary fiber of the Agaricus bisporus and the powder of Agaricus bisporus could be effectively utilized by the human gut microbiota to produce short-chain fatty acids and increase the relative abundance of beneficial bacteria. Compared with blank group, dietary fiber of Agaricus bisporus added in experimental group had the best results, which had an effective prebiotic regulation function on human gut microbiota.
-
表 1 短链脂肪酸各组分的线性回归方程
Table 1. Linear regression equation for components of short chain fatty acids
组分 线性回归方程 决定系数R2 乙酸 Y=18.602X−0.778 0.9999 丙酸 Y=31.342X−0.765 0.9998 丁酸 Y=41.565X−1.214 0.9999 -
[1] DI T, CHEN G J, SUN Y, et al. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra[J]. Journal of Functional Foods,2018,40:18−27. doi: 10.1016/j.jff.2017.10.040 [2] QIN J J, LI Y T, CAI Z M, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature,2012,490(7418):55−60. doi: 10.1038/nature11450 [3] SHANG Q S, JIANG H, CAI C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview[J]. Carbohydrate Polymers,2018,179:173−185. doi: 10.1016/j.carbpol.2017.09.059 [4] TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature,2009,457(7228):480−484. doi: 10.1038/nature07540 [5] PIETER V, LYNN V, JONAS G, et al. A novel non-digestible, carrot-derived polysaccharide (cRG-I) selectively modulates the human gut microbiota while promoting gut barrier integrity: An integrated in vitro approach[J]. Nutrients,2020,12(7):1917. doi: 10.3390/nu12071917 [6] 尚玮璇, 刘璐, 雷素珍, 等. 功能性碳水化合物通过调节肠道菌群和代谢物改善非酒精性脂肪肝的作用机制[J]. 食品与发酵工业,2022,48(14):311−318. [SHANG W X, LIU L, LEI S Z, et al. Mechanism of functional carbohydrates alleviating non-alcoholic fatty liver disease by regulating intestinal flora and metabolites[J]. Food and Fermentation Industries,2022,48(14):311−318. doi: 10.13995/j.cnki.11-1802/ts.029741 [7] 杨开, 张雅杰, 张酥, 等. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业,2020,46(9):37−42. [YANG K, ZANG Y J, ZHANG S, et al. Preparation of Ganoderma lucidum spore oligosaccharide and its regulation on gut microbiota[J]. Food and Fermentation Industries,2020,46(9):37−42. doi: 10.13995/j.cnki.11-1802/ts.023251 [8] 高美玲, 余诚玮, 范亚苇, 等. 甘薯渣中可溶性膳食纤维对肠道菌群代谢产物的影响[J]. 中国食品学报,2020,20(12):56−61. [GAO M L, YU C W, FAN Y W, et al. The effect of soluble dietary fiber in sweet potato residues on intesinal flora metabolites[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(12):56−61. doi: 10.16429/j.1009-7848.2020.12.008 [9] 党仪安. 双孢菇抗氧化肽的制备工艺研究[D]. 泰安: 山东农业大学, 2019.DANG Y A. Study on processing technology of antioxidant polypeptide from Agarius bisporus[D]. Taian: Shandong Agricultural University, 2019. [10] 胡亚平. 几种食用菌活性物质的提取及生物学活性的研究[Z]. 邢台: 邢台医学高等专科学校, 2018-11-20.HU Y P. Study on extraction and biological activity of active substances from several edible fungi[Z]. Xingtai: Xingtai Medical College, 2018-11-20. [11] 王文欣. 双孢菇可溶性膳食纤维的提取及其在曲奇中的应用[D]. 上海: 上海应用技术大学, 2018.WANG W X. Extraction of soluble dietary fiber from Agaricus bisporus and its application in cookies[D]. Shanghai: Shanghai Institute of Technology, 2018: 7−13. [12] YIN H M, WANG S N, NIE S P, et al. Coix polysaccharides: Gut microbiota regulation and immunomodulatory[J]. Bioactive Carbohydrates and Dietary Fibre,2018,16:53−61. doi: 10.1016/j.bcdf.2018.04.002 [13] 谌淑平, 李明智, 董楠, 等. 不同食用菌多糖复配物对RAW264.7巨噬细胞的免疫调节作用[J]. 食品工业科技,2021,42(17):366−372. [ZHAN S P, LI M Z, DONG N, et al. Immunomodulatory effect of different edible fungus polysaccharide complexes on RAW264.7 macrophages[J]. Science and Technology of Food Industry,2021,42(17):366−372. doi: 10.13386/j.issn1002-0306.2020110143 [14] AIDA F M N A, MUSTAFA S, DZULKIFLY M D. Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots[J]. Molecules,2012,17(2):1635−1651. doi: 10.3390/molecules17021635 [15] XU S Y, JUDE J A, LI N, et al. Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota[J]. Food Chemistry,2019,289:177−186. doi: 10.1016/j.foodchem.2019.03.050 [16] 董楠, 李明智, 徐德昌, 等. 5种食用菌多糖及复配多糖对RAW264.7细胞的免疫调节作用[J]. 食品研究与开发,2021,42(9):1−10. [DONG N, LI M Z, XU D C, et al. Immunomodulatory effect of polysaccharide derived from five kinds of edible fungi and their compound polysaccharides on RAW264.7 cells[J]. Food Research and Development,2021,42(9):1−10. doi: 10.12161/j.issn.1005-6521.2021.09.001 [17] 郭琳, 耿燕, 岳远佳, 等. 猴头菌粉与5-氨基水杨酸联用抑制小鼠急性溃疡性结肠炎并提高肠道共生菌Parabacteroides distasonis丰度[J]. 菌物学报,2021,6(1):1−11. [GUO L, GENG Y, YUE Y J, et al. Combination of dried powder of Hericium erinaceus mycelia and 5-aminosalicylic acid for treatment of acute ulcerative colitis and increase in abundance of gut commensal Parabacteroides distasonis[J]. Mycosystema,2021,6(1):1−11. [18] 田丽. 香菇及香菇菌糠多糖抗氧化性和对糖尿病作用的比较研究[D]. 天津: 天津大学, 2017.TIAN L. Comparision of the antioxidant activity and effects on diabetes of the spent Letinous edodes substrate polysaccharide and the Letinous edodes polysaccharide[D]. Tianjin: Tianjin University, 2017. [19] 钟炼军, 王强, 张建斌. 天然食用菌多糖物质及提取开发应用研究[J]. 中国食用菌,2019,38(4):5−7. [ZHONG L J, WANG Q, ZHANG J B. Study on the development and application of polysaccharides from natural edible fungi[J]. Edible Fungi of China,2019,38(4):5−7. doi: 10.13629/j.cnki.53-1054.2019.04.002 [20] SCHWAB C, RUSCHEWEYH H J, BUNESOVA V, et al. Trophic interactions of infant bifidobacteria and Eubacterium hallii during L-fucose and fucosyllactose degradation[J]. Frontiers in Microbiology,2017,8:95. [21] LEBET. Digestion procedure using mammalian enzymes to obtain substrates for in vitro fermentation studies[J]. Lebensm-Wiss Technol,1998,31:509−515. doi: 10.1006/fstl.1998.0402 [22] 王海松, 任鹏飞. 不同单糖组成的低聚糖对人肠道菌群的调节作用[J]. 中国食品学报,2020,20(7):44−52. [WANG H S, REN P F. Modulation of oligosaccharides with different monosaccharide composition on the human gut microbiota[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):44−52. doi: 10.16429/j.1009-7848.2020.07.006 [23] 王如月, 余讯, 徐静静, 等. 燕麦β-葡聚糖及其寡糖对肠道菌群结构和代谢的影响[J]. 食品与发酵工业,2020,46(11):85−91,97. [WANG R Y, YU X, XU J J, et al. Effects of oat β-glucan and its oligosaccharides on composition and metabolism of intestinal microorganisms[J]. Food and Fermentation Industries,2020,46(11):85−91,97. [24] RYCROFT C E, JONES M R, GIBSON G R, et al. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides[J]. Journal of Applied Microbiology,2001,91(5):878−887. doi: 10.1046/j.1365-2672.2001.01446.x [25] THAISA M C J, ANDREA C R, MARWA E H, et al. In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic Clostridium cluster XIVa in a targeted way[J]. Carbohydrate Polymers,2018,183:219−229. doi: 10.1016/j.carbpol.2017.12.020 [26] LI S S, QI Y L, CHEN L X, et al. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea[J]. International Journal of Biological Macromolecules,2019,124:931−937. doi: 10.1016/j.ijbiomac.2018.11.271 [27] 王远微. 辣椒素对肥胖小鼠肠道菌群的影响及其降脂机制研究[D]. 重庆: 西南大学, 2020.WANG Y W. The effects and mechanism of capsaicin on hypolipidemic by affecting gut microbiota in obese mice[D]. Chongqing: Southwest University, 2020. [28] LI L, ZHAO Y, LI J, et al. The adhesion of the gut microbiota to insoluble dietary fiber from soy hulls promoted the proliferation of probiotics in vitro[J]. LWT,2022,153:112560. doi: 10.1016/j.lwt.2021.112560 [29] LIU J, SUI Y, SHI Y J, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry,2014,70:113−122. [30] ZHANG H X, WANG Q, LIU S L, et al. Genomic and metagenomic insights into the microbial community in the regenerating intestine of the sea cucumber Apostichopus japonicus[J]. Frontiers in Microbiology,2019,10:4−8. doi: 10.3389/fmicb.2019.00004 [31] TAMURA K, HEMSWORTH G R, DÉJEAN G, et al. Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides[J]. Cell Reports,2017,21(2):417. doi: 10.1016/j.celrep.2017.09.049 [32] LIU Y, ZHENG D D, WANG D H, et al. Immunomodulatory activities of polysaccharides from white button mushroom, Agaricus bisporus (Agaricomycetes), fruiting bodies and cultured mycelia in healthy and immunosuppressed mice[J]. International Journal of Medicinal Mushrooms,2019,21(1):13−27. doi: 10.1615/IntJMedMushrooms.2018029648