留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同段式婴儿配方奶粉香气特征及主要香味物质比较

胡馨予 李若彤 张文欣 王春光 蒋士龙 张永久 朱保庆 李懿霖

胡馨予,李若彤,张文欣,等. 不同段式婴儿配方奶粉香气特征及主要香味物质比较[J]. 食品工业科技,2023,44(10):320−329. doi: 10.13386/j.issn1002-0306.2022080315
引用本文: 胡馨予,李若彤,张文欣,等. 不同段式婴儿配方奶粉香气特征及主要香味物质比较[J]. 食品工业科技,2023,44(10):320−329. doi: 10.13386/j.issn1002-0306.2022080315
HU Xinyu, LI Ruotong, ZHANG Wenxin, et al. Comparison of Aroma Characteristics and Main Aroma Substances in Three Infant Formulas from Different Stage[J]. Science and Technology of Food Industry, 2023, 44(10): 320−329. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080315
Citation: HU Xinyu, LI Ruotong, ZHANG Wenxin, et al. Comparison of Aroma Characteristics and Main Aroma Substances in Three Infant Formulas from Different Stage[J]. Science and Technology of Food Industry, 2023, 44(10): 320−329. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080315

不同段式婴儿配方奶粉香气特征及主要香味物质比较

doi: 10.13386/j.issn1002-0306.2022080315
基金项目: 北京林业大学科技创新计划项目(2021ZY65)。
详细信息
    作者简介:

    胡馨予(1997−),女,硕士研究生,研究方向:食品风味化学,E-mail:hxy_810520@163.com

    通讯作者:

    朱保庆(1982−),男,博士,副教授,研究方向:食品感官分析、食品风味化学、食品生物技术,E-mail:zhubaoqing@bjfu.edu.cn

    李懿霖(1989−),男,博士,研究方向:食品风味分析,食品口腔加工学, E-mail:liyilin@feihe.com

  • 中图分类号: TS207.3

Comparison of Aroma Characteristics and Main Aroma Substances in Three Infant Formulas from Different Stage

  • 摘要: 婴幼儿配方奶粉成为母乳外广泛应用的婴儿食品,其香气特征在很大程度上反映了产品的感官质量,影响了消费者的购买意愿。按照不同月龄,婴幼儿配方奶粉可以分为1段(0~6个月)、2段(6~12个月)、3段(12~24个月)等段式。本研究组合应用定量描述分析(quantitative descriptive analysis,QDA)、气相色谱-嗅闻-质谱(gas chromatography-olfactometry-mass spectrometry,GC-O-MS)技术及气相色谱静电场轨道阱高分辨质谱(gas chromatography-Orbitrap-mass spectrometry,GC-Orbitrap-MS)等技术研究了不同段式婴幼儿配方奶粉的香气特征及主要香味物质。结果表明,不同段式的奶粉的香气轮廓存在明显差异;特别是奶香味、鱼腥味、豆腥味、整体腥味等4种属性存在极显著差异(P<0.01),甜香、谷物味等2种属性存在显著差异(P<0.05);GC-O-MS分析共鉴定到24种关键化合物,其中醛类化合物达到15种,酮类化合物有4种,醇类化合物4种及1种呋喃类化合物;对3个样品进行GC-Orbitrap-MS分析,共鉴定到包括18种醛类、9种酮类、6种醇类等在内的47种化合物,覆盖了GC-O-MS鉴定到的所有化合物;GC-Orbitrap-MS鉴定的化合物中有41种化合物在3个段式样品间具有显著差异。综上,不同段式婴幼儿配方奶粉的香气轮廓和主要呈香组分存在差异,本研究的开展为婴幼儿配方奶粉产品感官品质控制和提升提供了依据。

     

  • 图  不同段式婴幼儿配方奶粉样品香气属性剖面图

    注:*为P<0.05,**为P<0.01。

    Figure  1.  Profile of aroma properties of infant formula samples in different stages

    图  不同段式婴幼儿配方奶粉中挥发性化合物GC-O定性结果堆积图(a)及韦恩图(b)

    Figure  2.  Accumulation diagram (a) and Wayne diagram (b) of volatile compounds identified in GC-O of infant formula of different stages

    表  1  实验样品基本信息

    Table  1.   Basic information of experimental samples

    序号样品名样品时段适用年龄段(月)生产日期产品规格(g)
    1F110~62022.3.11150
    2F226~122022.3.11150
    3F3312~242022.3.11150
    下载: 导出CSV

    表  2  不同段式婴幼儿配方奶粉GC-O定性结果及化合物嗅闻频数结果

    Table  2.   GC-O qualitative results and compound olfactory frequency results of infant formula in different stages

    序号化合物CAS香气描述a嗅闻频数b鉴定方法c
    F1F2F3
    醇类(4种)
    HA-11-庚醇111-70-6豆腥100MS, RI, Aroma
    HA-21-己醇111-27-3汽油001MS, RI, Aroma
    HA-31-辛烯-3-醇3391-86-4鱼腥,豆腥330MS, RI, Aroma
    HA-41-戊醇71-41-0鱼腥,奶腥512MS, RI, Aroma
    醛类(15种)
    AL-1(E,E)-2,4-癸二烯醛25152-84-5坚果,豆腥465MS, RI, Aroma
    AL-2(E,E)-2,4-庚二烯醛4313035油脂,青草121MS, RI, Aroma
    AL-3(E,E)-2,4-壬二烯醛5910-87-2谷物654MS, RI, Aroma
    AL-4(E)-2-癸烯醛3913-81-3植物,清香323MS, RI, Aroma
    AL-5(E)-2-庚醛18829-55-5鱼腥220MS, RI, Aroma
    AL-6(E)-2-己醛6728-26-3青草100MS, RI, Aroma
    AL-7(E)-2-壬醛18829-56-6土味,纸板,豆腥344MS, RI, Aroma
    AL-8(E)-2-辛醛2548-87-0坚果,豆腥132MS, RI, Aroma
    AL-92-十一烯醛2463-77-6铁锈,植物455MS, RI, Aroma
    AL-10丁醛123-72-8焦糊010MS, RI, Aroma
    AL-11庚醛111-71-7奶香222MS, RI, Aroma
    AL-12己醛66-25-1青草655MS, RI, Aroma
    AL-13辛醛124-13-0新鲜222MS, RI, Aroma
    AL-14戊醛110-62-3鱼腥,豆腥441MS, RI, Aroma
    AL-15反-4,5-环氧-(E)-2-癸烯醛360263金属,鱼腥556MS, Aroma
    酮类(4种)
    K-11-辛烯-3-酮4312-99-6蘑菇544MS, RI, Aroma
    K-21-戊烯-3-酮1629-58-9豆腥111MS, RI, Aroma
    K-3(E,E)-3,5-辛二烯-2-酮30086-02-3果香,清香312MS, RI, Aroma
    K-43-辛烯-2-酮1669-44-9坚果,甜香111MS, RI, Aroma
    呋喃(1种)
    F-12-戊基呋喃3777-69-3鱼腥,金属122MS, RI, Aroma
    注:*a:GC-O中嗅闻到的及与文献中对比后的香气描述,参考文献[16,38-41];*b:嗅闻频数:每个化合物被嗅闻到的次数,每个化合物最高频数=6,即3名评价员,每人嗅闻2次,均嗅闻到时,该化合物频数为6;*c:MS为根据质谱信息匹配定性;RI为根据实际RI与NIST RI比对匹配定性;Aroma为香气描述整理结果。
    下载: 导出CSV

    表  3  不同段式婴幼儿配方中挥发性化合物的GC-Orbitrap-MS定性定量分析

    Table  3.   Qualitative and quantitative analysis of volatile compounds in infant formula of different stages by GC-Orbitrap-MS

    序号化合物名称CAS实际RIm/z含量鉴定标准a
    F1F2F3
    醇类(6种)
    HA-11-庚醇111-70-688741.038360.015b0.040a0.006bMS, O, RI, STD
    HA-21-己醇111-27-380841.038360.008b0.014a0.006bMS, O, RI, STD
    HA-31-辛烯-3-醇3391-86-497957.033490.038b0.091a0.018bMS, O, RI, STD
    HA-41-戊醇71-41-077755.054230.033ab0.052a0.023bMS, O, RI
    HA-52-甲基-1-丙醇78-83-166241.03860.100b0.314a0.166abMS, RI, STD
    HA-61-戊烯-3-醇616-25-165757.03350.091b0.166a0.068bMS, RI
    呋喃(1种)
    F-12-戊基呋喃3777-69-390381.033460.052b0.110a0.050bMS, O, RI, STD
    苯(2种)
    B-1乙苯100-41-480291.054220.012a0.012a0.013aMS, RI
    B-291-20-31087128.062050.014b0.018a0.015bMS, RI, STD
    硫化物(2种)
    S-1二甲基二硫624-92-071193.990520.008a0.010a0.008aMS, RI, STD
    S-2二甲基砜67-71-093478.984830.113b0.143a0.103abMS, RI, STD
    醚类(1种)
    ET-1正丁基醚142-96-188457.069850.008a0.007a0.008aMS, RI
    醛类(18种)
    AL-1(E,E)-2,4-癸二烯醛25152-84-5130181.03350.017b0.086a0.009bMS, O, RI, STD
    AL-2(E,E)-2,4-庚二烯醛4313-0-35102781.033460.152b0.381a0.075bMS, O, RI
    AL-3(E,E)-2,4-壬二烯醛5910-87-2121981.033420.099b0.607a0.069bMS, O, RI
    AL-4(E)-2-癸烯醛3913-81-3126583.049130.016b0.072a0.011bMS, O, RI, STD
    AL-5(E)-2-庚醛18829-55-587741.038340.214b0.639a0.131bMS, O, RI, STD
    AL-6(E)-2-己醛6728-26-379741.038340.031b0.084a0.016bMS, O, RI
    AL-7(E)-2-壬醛18829-56-6105841.038340.021b0.065a0.015bMS, O, RI
    AL-8(E)-2-辛醛2548-87-095141.038340.117b0.439a0.079bMS, O, RI, STD
    AL-92-十一烯醛2463-77-6136967.054310.008b0.037a0.005bMS, O, RI
    AL-10丁醛123-72-861244.025670.009b0.018a0.006bMS, O, RI
    AL-11庚醛111-71-783441.038340.074b0.182a0.053bMS, O, RI, STD
    AL-12己醛66-25-175341.038342.144b5.003a1.662bMS, O, RI, STD
    AL-13辛醛124-13-091441.038340.128b0.360a0.089bMS, O, RI, STD
    AL-14戊醛110-62-366944.025550.374b0.665a0.284bMS, O, RI, STD
    AL-15反-4,5-环氧-(E)-2-癸烯醛360263135168.025660.025b0.103a0.015bMS, O, RI
    AL-163-甲基丁醛590-86-363641.038340.018b0.028a0.015bMS, RI
    AL-17苯甲醛100-52-7969105.033480.174b0.429a0.200bMS, RI
    AL-18壬醛124-19-6100441.038340.067b0.092a0.069bMS, RI, STD
    酸类(3种)
    A-1己酸142-62-198060.020580.071b0.183a0.063bMS, RI, STD
    A-2辛酸124-07-2106560.020580.015b0.026a0.015bMS, RI
    A-3癸酸334-48-5136060.020580.003b0.005a0.003abMS, RI
    萜烯(4种)
    T-1α-侧柏烯2867-05-292891.054180.003a0.003a0.003aMS, RI
    T-2对伞花烃99-87-6934119.085480.004b0.005a0.013aMS, RI, STD
    T-3(+)-莰烯5794-03-694893.069880.042b0.081ab0.130aMS, RI
    T-4dl-薄荷醇89-78-1107071.049140.002a0.004a0.004aMS, RI, STD
    酮类(9种)
    K-11-辛烯-3-酮4312-99-698155.017830.040b0.127a0.019bMS, O, RI, STD
    K-21-戊烯-3-酮1629-58-973655.017840.003b0.006a0.002bMS, O, RI
    K-3(E,E)-3,5-辛二烯-2-酮30086-02-397395.049150.050b0.192a0.025bMS, O, RI
    K-43-辛烯-2-酮1669-44-994543.017690.018b0.045a0.012bMS, O, RI
    K-52-丁酮78-93-360043.017690.066b0.125a0.100abMS, RI
    K-6甲基异丁酮108-10-170743.017690.128a0.144a0.135aMS, RI
    K-72-庚酮110-43-082543.017690.041b0.049a0.045abMS, RI, STD
    K-82,5-辛二酮3214-41-398843.054190.114b0.361a0.064bMS, RI
    K-92-壬酮821-55-6109358.041290.002b0.003a0.002bMS, RI, STD
    酯类(1种)
    ES-1乙酸乙酯141-78-660843.017690.019b0.025a0.021abMS, RI, STD
    注:*a:MS为根据质谱信息匹配定性;RI为根据实际RI与NIST RI比对匹配定性;O为GC-O中鉴定到的化合物;STD为与标准品谱库匹配定性。
    下载: 导出CSV
  • [1] 中国乳制品工业协会. RHB 204-2004 婴儿配方乳粉感官评鉴细则[S]. 北京: 中国标准出版社, 2004

    China Dairy Industry Association. RHB 204-2004 Sensory regulations of milk powder for infant and children[S]. Beijing: Standards Press of China, 2004.
    [2] 中华人民共和国卫生部. GB 10765-2010 食品安全国家标准 婴儿配方食品[S]. 北京: 中国标准出版社, 2010

    People's Republic of China Ministry of Health. GB 10765-2010 National food safety standard Infant formula [S]. Beijing: Standards Press of China, 2010.
    [3] 中华人民共和国卫生部. GB 10767-2010, 食品安全国家标准 较大婴儿配方食品[S]. 北京: 中国标准出版社, 2021

    People's Republic of China Ministry of Health. GB 10765-2021, National food safety standard Older infants and young children formula[S]. Beijing: Standards Press of China, 2010.
    [4] 姜毓君. 我国乳品质量安全现状及发展建议[J]. 中国食品药品监管,2019(2):31−36. [JIANG Yujun. Present situation and development suggestions of dairy quality and safety in China[J]. China Food Drug Administration,2019(2):31−36.
    [5] 何韵. 国产婴幼儿配方奶粉质量监管现状及市场趋势分析[J]. 现代食品,2021(19):61−63. [HE Yun. Analysis of quality supervision status and market trend of domestic infant formula milk powder[J]. Modern Food,2021(19):61−63. doi: 10.16736/j.cnki.cn41-1434/ts.2021.19.017
    [6] JIMENEZ-ALVAREZ D, GIUFFRIDA F, GOLAY P A, et al. Profiles of volatile compounds in milk containing fish oil analyzed by HS-SPME-GC/MS[J]. European Journal of Lipid Science & Technology,2010,110(3):277−283.
    [7] 牛仙, 邓泽元, 王佳琦, 等. 国内外婴儿配方奶粉中营养成分的比较与分析[J]. 中国乳品工业,2021,49(2):28−34, 46. [NIU Xian, DENG Zeyuan, WANG Jiaqi, et al. Comparison and analysis of nutrients in infant formula at home and abroad[J]. China Dairy Industry,2021,49(2):28−34, 46. doi: 10.19827/j.issn1001-2230.2021.02.006
    [8] 揭良, 苏米亚. 干湿混合工艺婴幼儿配方奶粉质量分析[J]. 中国乳品工业,2022,50(7):61−64. [JIE Liang, SU Miya. Quality analysis of infant formula milk powder by dry-wet mixing process[J]. China Dairy Industry,2022,50(7):61−64.
    [9] 朱丹晖, 赵杰, 朱丹丹, 等. 探究奶粉生产的质量管理措施[J]. 食品安全导刊,2020(15):69. [ZHU Danhui, ZHAO Jie, ZHU Dandan, et al. Exploring the quality management measures of milk powder production[J]. China Food Safety,2020(15):69. doi: 10.16043/j.cnki.cfs.2020.15.064
    [10] DIPASQUALE V, SERRA G, CORSELLO G, et al. Standard and specialized infant formulas in Europe: Making, marketing, and health outcomes[J]. Nutrition in Clinical Practice,2020,35(2):273−281.
    [11] LUGONJA N, GORJANOVI S, PASTOR F T, et al. Antioxidant capacity and quality of human milk and infant formula determined by direct current polarography[J]. Food Analytical Methods,2021,14(10):1−8.
    [12] WANG X, ESQUERRE C, DOWNEY G, et al. Assessment of infant formula quality and composition using Vis-NIR, MIR and Raman process analytical technologies[J]. Talanta,2018,183:320−328. doi: 10.1016/j.talanta.2018.02.080
    [13] VELLA C, ATTARD E. Consumption of minerals, toxic metals and hydroxymethylfurfural: Analysis of infant foods and formulae[J]. Multidisciplinary Digital Publishing Institute,2019,7(2):33.
    [14] JIA Hongxin, CHEN Wenliang, QI Xiaoyan, et al. The stability of milk-based infant formulas during accelerated storage[J]. CyTA-Journal of Food,2019,17(1):96−106. doi: 10.1080/19476337.2018.1561519
    [15] TANG Long, ZHANG Yuanyuan, JIN Yanjing, et al. Switchable GC/GC×GC-olfactometry-mass spectrometry system for the analysis of aroma components of infant formula milk-based on cow and goat milk[J]. Journal of Food Composition and Analysis,2022:112.
    [16] ZHANG Hao, ZHANG Yu, WANG Lijin, et al. Detection of odor difference between human milk and infant formula by sensory-directed analysis[J]. Food Chemistry,2022:382.
    [17] CLARKE H J, O’SULLIVAN M G, KERRY J P, et al. Correlating volatile lipid oxidation compounds with consumer sensory data in dairy based powders during storage[J]. Antioxidants,2020,9(4):338. doi: 10.3390/antiox9040338
    [18] 江晓丽, 郭泽镔, 危娟, 等. 不同加工技术对乳粉中营养素的影响及婴幼儿配方奶粉发展建议[J]. 中国奶牛,2022(6):33−37. [JIANG Xiaoli, GUO Zebin, WEI Juan, et al. Research progress on effects of different processing technologies on nutrients in milk powder[J]. China Dairy Cattle,2022(6):33−37.
    [19] HEWELT-BELKA W, D GARWOLIŃSKA, MYNARCZYK M, et al. Comparative lipidomic study of human milk from different lactation stages and milk formulas[J]. Nutrients,2020,12(7):2165.
    [20] ROCÍO, BARREIRO, PATRICIA, et al. Comparison of the fatty acid profile of Spanish infant formulas and Galician women breast milk[J]. Journal of Physiology & Biochemistry,2018,74(1):127−138.
    [21] 朱雨萱, 问亚琴, 许晓青, 等. 感官词典建立方法及食品中应用研究进展[J]. 食品工业科技,2022,43(5):396−407. [ZHU Yuxuan, WEN Yaqin, XU Xiaoqing, et al. Research progress of sensory lexicon building method and applications in food[J]. Science and Technology of Food Industry,2022,43(5):396−407.
    [22] CLARKE H J, GRIFFIN C, HENNESSY D, et al. Effect of bovine feeding system (pasture or concentrate) on the oxidative and sensory shelf life of whole milk powder[J]. Journal of Dairy Science,2021,104(10):10654−10668. doi: 10.3168/jds.2021-20299
    [23] ALIM A, SONG H, RAZA A, et al. Identification of bitter constituents in milk-based infant formula with hydrolysed milk protein through a sensory-guided technique[J]. International Dairy Journal,2020,110:104803. doi: 10.1016/j.idairyj.2020.104803
    [24] 迟雪露, 潘明慧, KHALMETOV MURATZHAN, 等. GCMS、GCOMS结合感官评价分析牦牛奶粉风味组分[J]. 食品工业科技,2017,38(17):235−240. [CHI Xuelu, PAN Minghui, KHALMETOV MURATZHAN, et al. Analysis of flavor components of yak milk powder by GCMS and GCOMS combined with sensory evaluation[J]. Science and Technology of Food Industry,2017,38(17):235−240. doi: 10.13386/j.issn1002-0306.2017.17.045
    [25] MAHDIE K, ELHAM G, ABDORREZA M, et al. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry[J]. Food Chemistry,2015,181:72−77. doi: 10.1016/j.foodchem.2015.02.069
    [26] CONDURSO C, CINCOTTA F, MERLINO M, et al. Stability of powdered infant formula during secondary shelf-life and domestic practices[J]. International Dairy Journal,2020,109:104761. doi: 10.1016/j.idairyj.2020.104761
    [27] 孙明朝, 杨悠悠, 余雅男, 等. 基于气相色谱-静电场轨道阱高分辨质谱的四种植物精油成分分析及其抗氧化活性评价[J]. 食品工业科技,2022,43(17):338−354. [SUN Mingchao, YANG Youyou, YU Yanan, et al. Composition analysis based on gas chromatography-orbitrap-mass spectrometry and evaluation of the antioxidant activity of four plants essential oils[J]. Science and Technology of Food Industry,2022,43(17):338−354.
    [28] MENG Zhijuan, LI Qiang, CONG Jianhan, et al. Rapid screening of 350 pesticide residues in vegetable and fruit juices by multi-plug filtration cleanup method combined with gas chromatography-electrostatic field orbitrap high resolution mass spectrometry[J]. Multidisciplinary Digital Publishing Institute,2021,10(7):1651.
    [29] LIU Yaran, QIAN Xu, XING Jingtao, et al. Accurate determination of 12 lactones and 11 volatile phenols in nongrape wines through headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-orbitrap mass spectrometry (GC-Orbitrap-MS)[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1971−1983. doi: 10.1021/acs.jafc.1c06981
    [30] XIAO Zubing, XIANG Pan, ZHU Jiancai, et al. Evaluation of the perceptual interaction among sulfur compounds in mango by feller's additive model, odor activity value and vector model[J]. Journal of Agricultural and Food Chemistry,2019,67(32):8926−8937. doi: 10.1021/acs.jafc.9b03156
    [31] GB/T 12313-1990, 感官分析方法 风味剖面检验[S]. 北京: 中国标准出版社, 2004

    GB/T 12313-1990, Sensory analysis method, flavor profile test[S]. Beijing: Standards Press of China, 1990.
    [32] 党昕, 刘军, 姚凌云, 等. GC-MS结合GC-O、电子鼻评价不同预处理方式对沙枣风味的影响[J/OL]. 食品科学: 1−13[2022-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220729.1015.048.html

    DANG Xin, LIU Jun, YAO Lingyun, et al. GC-MS combined with GC-O and electronic nose to evaluate the effect of different pretreatment methods on sand jujube flavor[J/OL].Food Science: 1−13[2022-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220729.1015.048.html
    [33] 吴天乐, 詹萍, 王鹏. 基于GC-O-MS结合化学计量学探究紫苏对鱼腥味的抑制作用[J]. 食品研究与开发,2022,43(18):9−18. [WU Tianle, ZHAN Ping, WANG Peng. To explore the inhibitory effect of Perilla on fishy smell based on GC-O-MS in combination[J]. Food Research and Development,2022,43(18):9−18. doi: 10.12161/j.issn.1005-6521.2022.18.002
    [34] CLARKE H J, MANNION D T, O'SULLIVAN M G, et al. Development of a headspace solid-phase microextraction gas chromatography mass spectrometry method for the quantification of volatiles associated with lipid oxidation in whole milk powder using response surface methodology[J]. Food Chemistry,2019,292:75−80. doi: 10.1016/j.foodchem.2019.04.027
    [35] PARK C W, STOUT M A, DRAKE M. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70%[J]. Journal of Dairy Science,2016,99(12):9598−9610. doi: 10.3168/jds.2016-11692
    [36] LI Shihuan, LI Jinhui, FENG Senwei, et al. Headspace solid-phase microextraction and on-fiber derivatization for the determination of 3-/2-MCPDE and GE in breast milk and infant formula by gas chromatography tandem mass spectrometry[J]. LWT,2022:154.
    [37] KOLETZKO B, BERGMANN K, BRENNA J T, et al. Should formula for infants provide arachidonic acid along with docosagexaenoic acid? A position paper of the European Academy of Pediatrics and the Child Health Foundation[J]. American Journal of Clinical Nutrition,2019,111(1):10−16.
    [38] ISABEL S L, AIDA M. CHISAGUANO T, et al. The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS Genotypes: The COGNIS Study[J]. Nutrients,2019,11(3):602. doi: 10.3390/nu11030602
    [39] YANG Ping, LIU Chen, SONG Huanlu, et al. Sensory-directed flavor analysis of off-flavor compounds in infant formula with deeply hydrolyzed milk protein and their possible sources[J]. LWT,2020,119(9):108861.
    [40] SAMAR D, ELIAS B, GUSTAV W, et al. Detection of lipid oxidation in infant formulas: Application of infrared spectroscopy to complex food systems[J]. Foods,2020,9(10):1432.
    [41] CHENG Hong, ZHU Rugang, ERICHSEN H, et al. High temperature storage of infant formula milk powder for prediction of storage stability at ambient conditions[J]. International Dairy Journal,2017,73:166−174. doi: 10.1016/j.idairyj.2017.05.007
    [42] GUDIPATI V, LET M B, MEYER A S, et al. Modeling the sensory impact of defined combinations of volatile lipid oxidation products on fishy and metallic off-flavors[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1635−1641. doi: 10.1021/jf0351321
    [43] HAUSNER H, PHILIPSEN M, SKOV T H, et al. Characterization of the volatile composition and variations between infant formulas and mother's milk[J]. Chemosensory Perception,2009,2(2):79−93. doi: 10.1007/s12078-009-9044-6
    [44] LI Ning,  ZHENG Fuping,  CHEN Haitao, et al. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS[J]. Food Chemistry,2011,129(3):1242−1252. doi: 10.1016/j.foodchem.2011.03.115
    [45] MORITA A, ARAKI T, IKEGAMI S, et al. Coupled stepwise PLS-VIP and ANN modeling for identifying and ranking aroma components contributing to the palatability of cheddar cheese[J]. Food Science and Technology Research,2015,21(2):175−186. doi: 10.3136/fstr.21.175
    [46] KOBAYASHI N, NISHIMURA O. Availability of detection frequency method using three-port gas chromatography-olfactometry for rapid comparison of whole milk powders[J]. Food Science and Technology Research,2014,20(4):809−814. doi: 10.3136/fstr.20.809
    [47] ZHANG Sha, YANG Ruijin,  ZHAO Wei, et al. Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing[J]. Journal of Food Science,2011,76(1):C127−C132. doi: 10.1111/j.1750-3841.2010.01916.x
    [48] CHÁVEZ-SERVÍN J L, CASTELLOTE A I, LÓPEZ-SABATER M C. Volatile compounds and fatty acid profiles in commercial milk-based infant formulae by static headspace gas chromatography: Evolution after opening the packet[J]. Food Chemistry,2007,107(1):558−569.
    [49] 唐玲, 徐奇友. 牛至对动物生产性能的影响及作用机制的研究[J]. 饲料研究,2010(9):14−17. [TANG Ling, XU Qiyu. Effects of oregano on animal performance and its mechanism[J]. Feed Research,2010(9):14−17.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回