Comparison of Aroma Characteristics and Main Aroma Substances in Three Infant Formulas from Different Stage
-
摘要: 婴幼儿配方奶粉成为母乳外广泛应用的婴儿食品,其香气特征在很大程度上反映了产品的感官质量,影响了消费者的购买意愿。按照不同月龄,婴幼儿配方奶粉可以分为1段(0~6个月)、2段(6~12个月)、3段(12~24个月)等段式。本研究组合应用定量描述分析(quantitative descriptive analysis,QDA)、气相色谱-嗅闻-质谱(gas chromatography-olfactometry-mass spectrometry,GC-O-MS)技术及气相色谱静电场轨道阱高分辨质谱(gas chromatography-Orbitrap-mass spectrometry,GC-Orbitrap-MS)等技术研究了不同段式婴幼儿配方奶粉的香气特征及主要香味物质。结果表明,不同段式的奶粉的香气轮廓存在明显差异;特别是奶香味、鱼腥味、豆腥味、整体腥味等4种属性存在极显著差异(P<0.01),甜香、谷物味等2种属性存在显著差异(P<0.05);GC-O-MS分析共鉴定到24种关键化合物,其中醛类化合物达到15种,酮类化合物有4种,醇类化合物4种及1种呋喃类化合物;对3个样品进行GC-Orbitrap-MS分析,共鉴定到包括18种醛类、9种酮类、6种醇类等在内的47种化合物,覆盖了GC-O-MS鉴定到的所有化合物;GC-Orbitrap-MS鉴定的化合物中有41种化合物在3个段式样品间具有显著差异。综上,不同段式婴幼儿配方奶粉的香气轮廓和主要呈香组分存在差异,本研究的开展为婴幼儿配方奶粉产品感官品质控制和提升提供了依据。Abstract: Infant formula has widely used as infant food besides human milk. The aroma characteristics determine the sensory quality of this product and the purchase intention of consumers to a great extent. It was generally developed infant formula products into 1-stage (for babies at 0~6 months), 2-stage (6~12 months) and 3-stage (12~24 months). In this study, a combination of quantitative description analysis (QDA), gas chromatography olfactory mass spectrometry (GC-O-MS) and gas chromatography high-resolution mass spectrometry (GC-Orbitrap-MS) was used to study the aroma characteristics and the aroma compounds composition in infant formulas with three different stages. The results showed that, there were significant differences in the aroma profiles of different stages of milk powder. There was a significant difference (P<0.01) in 'milky', 'fishy', 'beany', 'over off-flavor', the four attributes, and a significant difference (P<0.05) in 'sweety' and 'cereal' the two attributes. A total of 24 key compounds were identified by GC-O-MS analysis, including 15 aldehydes, 4 ketones, 4 alcohols and 1 furan. 47 compounds including 18 aldehydes, 9 ketones and 6 alcohols were identified by using GC-Orbitrap-MS, covering all the 24 components identified by GC-O-MS. The contents of 41 out of the 47 compounds were significantly different among the three samples studied. This study would provide a basis for controlling and improving the sensory quality of infant formula.
-
表 1 实验样品基本信息
Table 1. Basic information of experimental samples
序号 样品名 样品时段 适用年龄段(月) 生产日期 产品规格(g) 1 F1 1 0~6 2022.3.11 150 2 F2 2 6~12 2022.3.11 150 3 F3 3 12~24 2022.3.11 150 表 2 不同段式婴幼儿配方奶粉GC-O定性结果及化合物嗅闻频数结果
Table 2. GC-O qualitative results and compound olfactory frequency results of infant formula in different stages
序号 化合物 CAS 香气描述a 嗅闻频数b 鉴定方法c F1 F2 F3 醇类(4种) HA-1 1-庚醇 111-70-6 豆腥 1 0 0 MS, RI, Aroma HA-2 1-己醇 111-27-3 汽油 0 0 1 MS, RI, Aroma HA-3 1-辛烯-3-醇 3391-86-4 鱼腥,豆腥 3 3 0 MS, RI, Aroma HA-4 1-戊醇 71-41-0 鱼腥,奶腥 5 1 2 MS, RI, Aroma 醛类(15种) AL-1 (E,E)-2,4-癸二烯醛 25152-84-5 坚果,豆腥 4 6 5 MS, RI, Aroma AL-2 (E,E)-2,4-庚二烯醛 4313035 油脂,青草 1 2 1 MS, RI, Aroma AL-3 (E,E)-2,4-壬二烯醛 5910-87-2 谷物 6 5 4 MS, RI, Aroma AL-4 (E)-2-癸烯醛 3913-81-3 植物,清香 3 2 3 MS, RI, Aroma AL-5 (E)-2-庚醛 18829-55-5 鱼腥 2 2 0 MS, RI, Aroma AL-6 (E)-2-己醛 6728-26-3 青草 1 0 0 MS, RI, Aroma AL-7 (E)-2-壬醛 18829-56-6 土味,纸板,豆腥 3 4 4 MS, RI, Aroma AL-8 (E)-2-辛醛 2548-87-0 坚果,豆腥 1 3 2 MS, RI, Aroma AL-9 2-十一烯醛 2463-77-6 铁锈,植物 4 5 5 MS, RI, Aroma AL-10 丁醛 123-72-8 焦糊 0 1 0 MS, RI, Aroma AL-11 庚醛 111-71-7 奶香 2 2 2 MS, RI, Aroma AL-12 己醛 66-25-1 青草 6 5 5 MS, RI, Aroma AL-13 辛醛 124-13-0 新鲜 2 2 2 MS, RI, Aroma AL-14 戊醛 110-62-3 鱼腥,豆腥 4 4 1 MS, RI, Aroma AL-15 反-4,5-环氧-(E)-2-癸烯醛 360263 金属,鱼腥 5 5 6 MS, Aroma 酮类(4种) K-1 1-辛烯-3-酮 4312-99-6 蘑菇 5 4 4 MS, RI, Aroma K-2 1-戊烯-3-酮 1629-58-9 豆腥 1 1 1 MS, RI, Aroma K-3 (E,E)-3,5-辛二烯-2-酮 30086-02-3 果香,清香 3 1 2 MS, RI, Aroma K-4 3-辛烯-2-酮 1669-44-9 坚果,甜香 1 1 1 MS, RI, Aroma 呋喃(1种) F-1 2-戊基呋喃 3777-69-3 鱼腥,金属 1 2 2 MS, RI, Aroma 注:*a:GC-O中嗅闻到的及与文献中对比后的香气描述,参考文献[16,38-41];*b:嗅闻频数:每个化合物被嗅闻到的次数,每个化合物最高频数=6,即3名评价员,每人嗅闻2次,均嗅闻到时,该化合物频数为6;*c:MS为根据质谱信息匹配定性;RI为根据实际RI与NIST RI比对匹配定性;Aroma为香气描述整理结果。 表 3 不同段式婴幼儿配方中挥发性化合物的GC-Orbitrap-MS定性定量分析
Table 3. Qualitative and quantitative analysis of volatile compounds in infant formula of different stages by GC-Orbitrap-MS
序号 化合物名称 CAS 实际RI m/z 含量 鉴定标准a F1 F2 F3 醇类(6种) HA-1 1-庚醇 111-70-6 887 41.03836 0.015b 0.040a 0.006b MS, O, RI, STD HA-2 1-己醇 111-27-3 808 41.03836 0.008b 0.014a 0.006b MS, O, RI, STD HA-3 1-辛烯-3-醇 3391-86-4 979 57.03349 0.038b 0.091a 0.018b MS, O, RI, STD HA-4 1-戊醇 71-41-0 777 55.05423 0.033ab 0.052a 0.023b MS, O, RI HA-5 2-甲基-1-丙醇 78-83-1 662 41.0386 0.100b 0.314a 0.166ab MS, RI, STD HA-6 1-戊烯-3-醇 616-25-1 657 57.0335 0.091b 0.166a 0.068b MS, RI 呋喃(1种) F-1 2-戊基呋喃 3777-69-3 903 81.03346 0.052b 0.110a 0.050b MS, O, RI, STD 苯(2种) B-1 乙苯 100-41-4 802 91.05422 0.012a 0.012a 0.013a MS, RI B-2 萘 91-20-3 1087 128.06205 0.014b 0.018a 0.015b MS, RI, STD 硫化物(2种) S-1 二甲基二硫 624-92-0 711 93.99052 0.008a 0.010a 0.008a MS, RI, STD S-2 二甲基砜 67-71-0 934 78.98483 0.113b 0.143a 0.103ab MS, RI, STD 醚类(1种) ET-1 正丁基醚 142-96-1 884 57.06985 0.008a 0.007a 0.008a MS, RI 醛类(18种) AL-1 (E,E)-2,4-癸二烯醛 25152-84-5 1301 81.0335 0.017b 0.086a 0.009b MS, O, RI, STD AL-2 (E,E)-2,4-庚二烯醛 4313-0-35 1027 81.03346 0.152b 0.381a 0.075b MS, O, RI AL-3 (E,E)-2,4-壬二烯醛 5910-87-2 1219 81.03342 0.099b 0.607a 0.069b MS, O, RI AL-4 (E)-2-癸烯醛 3913-81-3 1265 83.04913 0.016b 0.072a 0.011b MS, O, RI, STD AL-5 (E)-2-庚醛 18829-55-5 877 41.03834 0.214b 0.639a 0.131b MS, O, RI, STD AL-6 (E)-2-己醛 6728-26-3 797 41.03834 0.031b 0.084a 0.016b MS, O, RI AL-7 (E)-2-壬醛 18829-56-6 1058 41.03834 0.021b 0.065a 0.015b MS, O, RI AL-8 (E)-2-辛醛 2548-87-0 951 41.03834 0.117b 0.439a 0.079b MS, O, RI, STD AL-9 2-十一烯醛 2463-77-6 1369 67.05431 0.008b 0.037a 0.005b MS, O, RI AL-10 丁醛 123-72-8 612 44.02567 0.009b 0.018a 0.006b MS, O, RI AL-11 庚醛 111-71-7 834 41.03834 0.074b 0.182a 0.053b MS, O, RI, STD AL-12 己醛 66-25-1 753 41.03834 2.144b 5.003a 1.662b MS, O, RI, STD AL-13 辛醛 124-13-0 914 41.03834 0.128b 0.360a 0.089b MS, O, RI, STD AL-14 戊醛 110-62-3 669 44.02555 0.374b 0.665a 0.284b MS, O, RI, STD AL-15 反-4,5-环氧-(E)-2-癸烯醛 360263 1351 68.02566 0.025b 0.103a 0.015b MS, O, RI AL-16 3-甲基丁醛 590-86-3 636 41.03834 0.018b 0.028a 0.015b MS, RI AL-17 苯甲醛 100-52-7 969 105.03348 0.174b 0.429a 0.200b MS, RI AL-18 壬醛 124-19-6 1004 41.03834 0.067b 0.092a 0.069b MS, RI, STD 酸类(3种) A-1 己酸 142-62-1 980 60.02058 0.071b 0.183a 0.063b MS, RI, STD A-2 辛酸 124-07-2 1065 60.02058 0.015b 0.026a 0.015b MS, RI A-3 癸酸 334-48-5 1360 60.02058 0.003b 0.005a 0.003ab MS, RI 萜烯(4种) T-1 α-侧柏烯 2867-05-2 928 91.05418 0.003a 0.003a 0.003a MS, RI T-2 对伞花烃 99-87-6 934 119.08548 0.004b 0.005a 0.013a MS, RI, STD T-3 (+)-莰烯 5794-03-6 948 93.06988 0.042b 0.081ab 0.130a MS, RI T-4 dl-薄荷醇 89-78-1 1070 71.04914 0.002a 0.004a 0.004a MS, RI, STD 酮类(9种) K-1 1-辛烯-3-酮 4312-99-6 981 55.01783 0.040b 0.127a 0.019b MS, O, RI, STD K-2 1-戊烯-3-酮 1629-58-9 736 55.01784 0.003b 0.006a 0.002b MS, O, RI K-3 (E,E)-3,5-辛二烯-2-酮 30086-02-3 973 95.04915 0.050b 0.192a 0.025b MS, O, RI K-4 3-辛烯-2-酮 1669-44-9 945 43.01769 0.018b 0.045a 0.012b MS, O, RI K-5 2-丁酮 78-93-3 600 43.01769 0.066b 0.125a 0.100ab MS, RI K-6 甲基异丁酮 108-10-1 707 43.01769 0.128a 0.144a 0.135a MS, RI K-7 2-庚酮 110-43-0 825 43.01769 0.041b 0.049a 0.045ab MS, RI, STD K-8 2,5-辛二酮 3214-41-3 988 43.05419 0.114b 0.361a 0.064b MS, RI K-9 2-壬酮 821-55-6 1093 58.04129 0.002b 0.003a 0.002b MS, RI, STD 酯类(1种) ES-1 乙酸乙酯 141-78-6 608 43.01769 0.019b 0.025a 0.021ab MS, RI, STD 注:*a:MS为根据质谱信息匹配定性;RI为根据实际RI与NIST RI比对匹配定性;O为GC-O中鉴定到的化合物;STD为与标准品谱库匹配定性。 -
[1] 中国乳制品工业协会. RHB 204-2004 婴儿配方乳粉感官评鉴细则[S]. 北京: 中国标准出版社, 2004China Dairy Industry Association. RHB 204-2004 Sensory regulations of milk powder for infant and children[S]. Beijing: Standards Press of China, 2004. [2] 中华人民共和国卫生部. GB 10765-2010 食品安全国家标准 婴儿配方食品[S]. 北京: 中国标准出版社, 2010People's Republic of China Ministry of Health. GB 10765-2010 National food safety standard Infant formula [S]. Beijing: Standards Press of China, 2010. [3] 中华人民共和国卫生部. GB 10767-2010, 食品安全国家标准 较大婴儿配方食品[S]. 北京: 中国标准出版社, 2021People's Republic of China Ministry of Health. GB 10765-2021, National food safety standard Older infants and young children formula[S]. Beijing: Standards Press of China, 2010. [4] 姜毓君. 我国乳品质量安全现状及发展建议[J]. 中国食品药品监管,2019(2):31−36. [JIANG Yujun. Present situation and development suggestions of dairy quality and safety in China[J]. China Food Drug Administration,2019(2):31−36. [5] 何韵. 国产婴幼儿配方奶粉质量监管现状及市场趋势分析[J]. 现代食品,2021(19):61−63. [HE Yun. Analysis of quality supervision status and market trend of domestic infant formula milk powder[J]. Modern Food,2021(19):61−63. doi: 10.16736/j.cnki.cn41-1434/ts.2021.19.017 [6] JIMENEZ-ALVAREZ D, GIUFFRIDA F, GOLAY P A, et al. Profiles of volatile compounds in milk containing fish oil analyzed by HS-SPME-GC/MS[J]. European Journal of Lipid Science & Technology,2010,110(3):277−283. [7] 牛仙, 邓泽元, 王佳琦, 等. 国内外婴儿配方奶粉中营养成分的比较与分析[J]. 中国乳品工业,2021,49(2):28−34, 46. [NIU Xian, DENG Zeyuan, WANG Jiaqi, et al. Comparison and analysis of nutrients in infant formula at home and abroad[J]. China Dairy Industry,2021,49(2):28−34, 46. doi: 10.19827/j.issn1001-2230.2021.02.006 [8] 揭良, 苏米亚. 干湿混合工艺婴幼儿配方奶粉质量分析[J]. 中国乳品工业,2022,50(7):61−64. [JIE Liang, SU Miya. Quality analysis of infant formula milk powder by dry-wet mixing process[J]. China Dairy Industry,2022,50(7):61−64. [9] 朱丹晖, 赵杰, 朱丹丹, 等. 探究奶粉生产的质量管理措施[J]. 食品安全导刊,2020(15):69. [ZHU Danhui, ZHAO Jie, ZHU Dandan, et al. Exploring the quality management measures of milk powder production[J]. China Food Safety,2020(15):69. doi: 10.16043/j.cnki.cfs.2020.15.064 [10] DIPASQUALE V, SERRA G, CORSELLO G, et al. Standard and specialized infant formulas in Europe: Making, marketing, and health outcomes[J]. Nutrition in Clinical Practice,2020,35(2):273−281. [11] LUGONJA N, GORJANOVI S, PASTOR F T, et al. Antioxidant capacity and quality of human milk and infant formula determined by direct current polarography[J]. Food Analytical Methods,2021,14(10):1−8. [12] WANG X, ESQUERRE C, DOWNEY G, et al. Assessment of infant formula quality and composition using Vis-NIR, MIR and Raman process analytical technologies[J]. Talanta,2018,183:320−328. doi: 10.1016/j.talanta.2018.02.080 [13] VELLA C, ATTARD E. Consumption of minerals, toxic metals and hydroxymethylfurfural: Analysis of infant foods and formulae[J]. Multidisciplinary Digital Publishing Institute,2019,7(2):33. [14] JIA Hongxin, CHEN Wenliang, QI Xiaoyan, et al. The stability of milk-based infant formulas during accelerated storage[J]. CyTA-Journal of Food,2019,17(1):96−106. doi: 10.1080/19476337.2018.1561519 [15] TANG Long, ZHANG Yuanyuan, JIN Yanjing, et al. Switchable GC/GC×GC-olfactometry-mass spectrometry system for the analysis of aroma components of infant formula milk-based on cow and goat milk[J]. Journal of Food Composition and Analysis,2022:112. [16] ZHANG Hao, ZHANG Yu, WANG Lijin, et al. Detection of odor difference between human milk and infant formula by sensory-directed analysis[J]. Food Chemistry,2022:382. [17] CLARKE H J, O’SULLIVAN M G, KERRY J P, et al. Correlating volatile lipid oxidation compounds with consumer sensory data in dairy based powders during storage[J]. Antioxidants,2020,9(4):338. doi: 10.3390/antiox9040338 [18] 江晓丽, 郭泽镔, 危娟, 等. 不同加工技术对乳粉中营养素的影响及婴幼儿配方奶粉发展建议[J]. 中国奶牛,2022(6):33−37. [JIANG Xiaoli, GUO Zebin, WEI Juan, et al. Research progress on effects of different processing technologies on nutrients in milk powder[J]. China Dairy Cattle,2022(6):33−37. [19] HEWELT-BELKA W, D GARWOLIŃSKA, MYNARCZYK M, et al. Comparative lipidomic study of human milk from different lactation stages and milk formulas[J]. Nutrients,2020,12(7):2165. [20] ROCÍO, BARREIRO, PATRICIA, et al. Comparison of the fatty acid profile of Spanish infant formulas and Galician women breast milk[J]. Journal of Physiology & Biochemistry,2018,74(1):127−138. [21] 朱雨萱, 问亚琴, 许晓青, 等. 感官词典建立方法及食品中应用研究进展[J]. 食品工业科技,2022,43(5):396−407. [ZHU Yuxuan, WEN Yaqin, XU Xiaoqing, et al. Research progress of sensory lexicon building method and applications in food[J]. Science and Technology of Food Industry,2022,43(5):396−407. [22] CLARKE H J, GRIFFIN C, HENNESSY D, et al. Effect of bovine feeding system (pasture or concentrate) on the oxidative and sensory shelf life of whole milk powder[J]. Journal of Dairy Science,2021,104(10):10654−10668. doi: 10.3168/jds.2021-20299 [23] ALIM A, SONG H, RAZA A, et al. Identification of bitter constituents in milk-based infant formula with hydrolysed milk protein through a sensory-guided technique[J]. International Dairy Journal,2020,110:104803. doi: 10.1016/j.idairyj.2020.104803 [24] 迟雪露, 潘明慧, KHALMETOV MURATZHAN, 等. GCMS、GCOMS结合感官评价分析牦牛奶粉风味组分[J]. 食品工业科技,2017,38(17):235−240. [CHI Xuelu, PAN Minghui, KHALMETOV MURATZHAN, et al. Analysis of flavor components of yak milk powder by GCMS and GCOMS combined with sensory evaluation[J]. Science and Technology of Food Industry,2017,38(17):235−240. doi: 10.13386/j.issn1002-0306.2017.17.045 [25] MAHDIE K, ELHAM G, ABDORREZA M, et al. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry[J]. Food Chemistry,2015,181:72−77. doi: 10.1016/j.foodchem.2015.02.069 [26] CONDURSO C, CINCOTTA F, MERLINO M, et al. Stability of powdered infant formula during secondary shelf-life and domestic practices[J]. International Dairy Journal,2020,109:104761. doi: 10.1016/j.idairyj.2020.104761 [27] 孙明朝, 杨悠悠, 余雅男, 等. 基于气相色谱-静电场轨道阱高分辨质谱的四种植物精油成分分析及其抗氧化活性评价[J]. 食品工业科技,2022,43(17):338−354. [SUN Mingchao, YANG Youyou, YU Yanan, et al. Composition analysis based on gas chromatography-orbitrap-mass spectrometry and evaluation of the antioxidant activity of four plants essential oils[J]. Science and Technology of Food Industry,2022,43(17):338−354. [28] MENG Zhijuan, LI Qiang, CONG Jianhan, et al. Rapid screening of 350 pesticide residues in vegetable and fruit juices by multi-plug filtration cleanup method combined with gas chromatography-electrostatic field orbitrap high resolution mass spectrometry[J]. Multidisciplinary Digital Publishing Institute,2021,10(7):1651. [29] LIU Yaran, QIAN Xu, XING Jingtao, et al. Accurate determination of 12 lactones and 11 volatile phenols in nongrape wines through headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-orbitrap mass spectrometry (GC-Orbitrap-MS)[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1971−1983. doi: 10.1021/acs.jafc.1c06981 [30] XIAO Zubing, XIANG Pan, ZHU Jiancai, et al. Evaluation of the perceptual interaction among sulfur compounds in mango by feller's additive model, odor activity value and vector model[J]. Journal of Agricultural and Food Chemistry,2019,67(32):8926−8937. doi: 10.1021/acs.jafc.9b03156 [31] GB/T 12313-1990, 感官分析方法 风味剖面检验[S]. 北京: 中国标准出版社, 2004GB/T 12313-1990, Sensory analysis method, flavor profile test[S]. Beijing: Standards Press of China, 1990. [32] 党昕, 刘军, 姚凌云, 等. GC-MS结合GC-O、电子鼻评价不同预处理方式对沙枣风味的影响[J/OL]. 食品科学: 1−13[2022-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220729.1015.048.htmlDANG Xin, LIU Jun, YAO Lingyun, et al. GC-MS combined with GC-O and electronic nose to evaluate the effect of different pretreatment methods on sand jujube flavor[J/OL].Food Science: 1−13[2022-10-04]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220729.1015.048.html [33] 吴天乐, 詹萍, 王鹏. 基于GC-O-MS结合化学计量学探究紫苏对鱼腥味的抑制作用[J]. 食品研究与开发,2022,43(18):9−18. [WU Tianle, ZHAN Ping, WANG Peng. To explore the inhibitory effect of Perilla on fishy smell based on GC-O-MS in combination[J]. Food Research and Development,2022,43(18):9−18. doi: 10.12161/j.issn.1005-6521.2022.18.002 [34] CLARKE H J, MANNION D T, O'SULLIVAN M G, et al. Development of a headspace solid-phase microextraction gas chromatography mass spectrometry method for the quantification of volatiles associated with lipid oxidation in whole milk powder using response surface methodology[J]. Food Chemistry,2019,292:75−80. doi: 10.1016/j.foodchem.2019.04.027 [35] PARK C W, STOUT M A, DRAKE M. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70%[J]. Journal of Dairy Science,2016,99(12):9598−9610. doi: 10.3168/jds.2016-11692 [36] LI Shihuan, LI Jinhui, FENG Senwei, et al. Headspace solid-phase microextraction and on-fiber derivatization for the determination of 3-/2-MCPDE and GE in breast milk and infant formula by gas chromatography tandem mass spectrometry[J]. LWT,2022:154. [37] KOLETZKO B, BERGMANN K, BRENNA J T, et al. Should formula for infants provide arachidonic acid along with docosagexaenoic acid? A position paper of the European Academy of Pediatrics and the Child Health Foundation[J]. American Journal of Clinical Nutrition,2019,111(1):10−16. [38] ISABEL S L, AIDA M. CHISAGUANO T, et al. The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS Genotypes: The COGNIS Study[J]. Nutrients,2019,11(3):602. doi: 10.3390/nu11030602 [39] YANG Ping, LIU Chen, SONG Huanlu, et al. Sensory-directed flavor analysis of off-flavor compounds in infant formula with deeply hydrolyzed milk protein and their possible sources[J]. LWT,2020,119(9):108861. [40] SAMAR D, ELIAS B, GUSTAV W, et al. Detection of lipid oxidation in infant formulas: Application of infrared spectroscopy to complex food systems[J]. Foods,2020,9(10):1432. [41] CHENG Hong, ZHU Rugang, ERICHSEN H, et al. High temperature storage of infant formula milk powder for prediction of storage stability at ambient conditions[J]. International Dairy Journal,2017,73:166−174. doi: 10.1016/j.idairyj.2017.05.007 [42] GUDIPATI V, LET M B, MEYER A S, et al. Modeling the sensory impact of defined combinations of volatile lipid oxidation products on fishy and metallic off-flavors[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1635−1641. doi: 10.1021/jf0351321 [43] HAUSNER H, PHILIPSEN M, SKOV T H, et al. Characterization of the volatile composition and variations between infant formulas and mother's milk[J]. Chemosensory Perception,2009,2(2):79−93. doi: 10.1007/s12078-009-9044-6 [44] LI Ning, ZHENG Fuping, CHEN Haitao, et al. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS[J]. Food Chemistry,2011,129(3):1242−1252. doi: 10.1016/j.foodchem.2011.03.115 [45] MORITA A, ARAKI T, IKEGAMI S, et al. Coupled stepwise PLS-VIP and ANN modeling for identifying and ranking aroma components contributing to the palatability of cheddar cheese[J]. Food Science and Technology Research,2015,21(2):175−186. doi: 10.3136/fstr.21.175 [46] KOBAYASHI N, NISHIMURA O. Availability of detection frequency method using three-port gas chromatography-olfactometry for rapid comparison of whole milk powders[J]. Food Science and Technology Research,2014,20(4):809−814. doi: 10.3136/fstr.20.809 [47] ZHANG Sha, YANG Ruijin, ZHAO Wei, et al. Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing[J]. Journal of Food Science,2011,76(1):C127−C132. doi: 10.1111/j.1750-3841.2010.01916.x [48] CHÁVEZ-SERVÍN J L, CASTELLOTE A I, LÓPEZ-SABATER M C. Volatile compounds and fatty acid profiles in commercial milk-based infant formulae by static headspace gas chromatography: Evolution after opening the packet[J]. Food Chemistry,2007,107(1):558−569. [49] 唐玲, 徐奇友. 牛至对动物生产性能的影响及作用机制的研究[J]. 饲料研究,2010(9):14−17. [TANG Ling, XU Qiyu. Effects of oregano on animal performance and its mechanism[J]. Feed Research,2010(9):14−17.