留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群的分子致病机制及营养干预研究进展

罗绽 陈磊

罗绽,陈磊. 肠道菌群的分子致病机制及营养干预研究进展[J]. 食品工业科技,2023,44(10):463−468. doi: 10.13386/j.issn1002-0306.2022090055
引用本文: 罗绽,陈磊. 肠道菌群的分子致病机制及营养干预研究进展[J]. 食品工业科技,2023,44(10):463−468. doi: 10.13386/j.issn1002-0306.2022090055
LUO Zhan, CHEN Lei. Research Progress of Molecular Pathogenic Mechanism and Nutritional Intervention of Gut Microbiome[J]. Science and Technology of Food Industry, 2023, 44(10): 463−468. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090055
Citation: LUO Zhan, CHEN Lei. Research Progress of Molecular Pathogenic Mechanism and Nutritional Intervention of Gut Microbiome[J]. Science and Technology of Food Industry, 2023, 44(10): 463−468. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090055

肠道菌群的分子致病机制及营养干预研究进展

doi: 10.13386/j.issn1002-0306.2022090055
基金项目: 国家重点研发计划(2020YFA0906800)。
详细信息
    作者简介:

    罗绽(2001−),女,本科,研究方向:分子生物学与生物化学,E-mail:roseluoz@foxmail.com

    通讯作者:

    陈磊(1979−),男,博士,教授,研究方向:微生物合成生物学,E-mail:lchen@tju.edu.cn

  • 中图分类号: Q939.99

Research Progress of Molecular Pathogenic Mechanism and Nutritional Intervention of Gut Microbiome

  • 摘要: 肠道菌群的丰度、种类发生变化能够导致疾病发生,许多基础疾病和神经系统疾病被证实与肠道菌群有关。探究肠道菌群的分子致病机制是定向调控肠道菌群从而治愈疾病的基础。本文综述了肠道菌群中功能基因差异导致代谢失调、促炎因子引发炎症级联反应、菌群介导免疫细胞分化和脑-肠轴影响大脑活动的4种分子致病机制,提出了从关联分析出发到分子机制研究的“自上而下”的研究模式,以及针对对应的致病机制发展出的营养干预策略。未来可基于“自上而下”的模式深入研究肠道菌群致病机制,并从致病机制出发,精准地进行营养干预。

     

  • 肠道菌群包括细菌、古细菌和真菌,数量巨大[1-2]。研究表明,基础疾病如炎症性肠病(IBD)[3]、心血管病[4]、糖尿病[5]、免疫系统疾病[6],神经系统疾病如帕金森症[7-8]、焦虑症以及抑郁症[9]均与肠道菌群有关。虽然也有研究者认为,肠道菌群并不是和所有疾病都有关[10];但以肠道菌群研究为基础的异源粪菌移植(FMT),由于其在治疗自闭症、艰难梭菌感染(rCDI)等疾病的成功,展现了肠道菌群在疾病调节方面的重大作用[6]

    了解菌群与疾病关系中的“因果关系”,才可能为慢性疾病的防治带来新的诊断预测的标志物和预防治疗的新靶点[11]。鉴于此,本文综述了目前国内外有关肠道菌群致病与治疗的研究进展,旨在回归分子致病机制的“因果关系问题”,提出一套“自上而下”、层层深入、从验证菌群与疾病强关联性出发,分析菌群丰度与种类差异,从而把握菌群致病的分子机制的可靠研究模式,并从致病的底层机制出发,提出“自下而上”的营养干预策略,例如通过饮食定向富集有益菌群[12]或提高菌群丰富度[13]、通过保护肠道屏障抑制促炎因子传递[14]、通过调节肠神经系统的反射调控神经系统疾病[8]等。这为未来肠道菌群的研究模式和干预策略提供新思路。

    饮食干预后,疾病指标发生统计意义上的显著变化。例如,地中海饮食能够增加纤维降解细菌如瘤胃球菌(Ruminococcus)、粪杆菌属(Faecalibacterium)丰度,降低肠道炎症[15];增加饮食中相对碳水化合物的摄入,经菌群-肠-脑轴,能够降低抑郁症的发病风险[16];膳食干预后,肥胖症患者体内肠杆菌属的丰度变化明显[17],提示饮食干预能够改变肠道菌群丰富度和结构,从而缓解病症。

    虽然可以通过观察受试人菌群结构随疾病程度改变的变化情况,来推测优势菌种与疾病存在的相关性,然而该方法并不能直接证明症状与菌群变化的直接因果关系。进一步设计以菌群种类或浓度为变量的对照实验,才能验证疾病与菌群的强关联性。例如,与双歧杆菌(Bifidobacterium)相比,阴沟肠杆菌(Enterobacter cloacae)B29灌胃的小鼠体重明显升高,揭示阴沟肠杆菌(Enterobacter cloacae)B29与肥胖症和脂肪肝的强关联性[17];嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)的浓度提升,改善了小鼠的肌萎缩侧索硬化症(ALS)病情并延长了小鼠生存期[18]

    在强关联的基础上,继续深入研究菌群与疾病的因果关系,则需要从分子层面阐述菌群的致病机制。菌群致病机制主要有4种方式,分别是功能基因差异导致的代谢失调、促炎因子引发的炎症级联反应、菌群介导免疫细胞的异常分化以及经脑-肠轴影响大脑活动。这4种方式的诱因和作用机制均不相同。

    肠道菌群的代谢失调的主要原因是菌群的维稳能力弱,这是代谢功能基因的缺失或表达异常造成的。炎症性肠病(IBD)患者的菌群代谢失调,是因为细胞生长与死亡、消化、脂质代谢、膜转运、维生素及其他氨基酸代谢基因的表达异常造成的[3];作为细胞内最重要的抗氧化剂,谷胱甘肽编码基因的异常表达将引起细胞内活性氧的积累,从而导致肠道组织损伤[19]。单形拟杆菌(Bacteroide suniformis)和普通拟杆菌(Bacteroides)的减少将削弱葡萄糖胺聚糖代谢,导致关节软骨的持续损伤,诱发类风湿性关节炎(RA)[20]

    功能基因异常导致代谢失调而引发的疾病应从功能基因筛选入手,设计诱导过表达或敲除关键基因的对照实验能够进一步确证致病基因。例如敲除阴沟肠杆菌(Enterobacter cloacae)B29中参与LPS合成的waaG基因后,小鼠的非酒精性脂肪肝(NAFLD)症状消失[21]。在肠道菌群中移入代谢色氨酸的乳杆菌能够改善CARD9基因缺失诱发的色氨酸代谢异常,从而缓解IBD症状[22]。根据基因编码的蛋白质功能和参与的代谢途径,分析积累的毒性物质如何造成的机体损伤,才能准确把握功能基因的致病机制。

    促炎因子诱导炎症级联反应发生的主要方式是内毒素LPS穿过肠道屏障、在血液中积累,然后与非特异性免疫受体Toll样受体4(TLR4)特异性结合传导炎症信号[6,17,21]。当能够产生和释放LPS的促炎菌成为肠道菌群中的优势菌种时,菌群的促炎能力将明显升高[17,23]。当肠道屏障被破坏时,血液中就会出现内毒素积累的现象,从而诱发炎症级联反应。高脂饮食(high-fat diet,HFD)或食品添加剂都能通过改变肠道中关键菌群的比例、释放LPS,同时降低保护黏膜层分子的含量如β-防御素(β-defenses)破坏肠道屏障[23]。此外,膜辅助受体CD14也可以帮助易位高毒性内毒素穿过肠道屏障[14,17,21]。还有研究显示,血液中微量内毒素引发的炎症信号就能够导致小鼠脂代谢紊乱、肥胖等慢性炎症症状[23-25],当LPS无法完全代谢时还会诱发肝损伤,如NAFLD等[14,21,26],激烈的炎症反应甚至可能诱发动脉粥样硬化和血栓[14]

    致病菌种产生的促炎因子穿过肠道屏障、与免疫受体的结合,进而传导级联信号。促炎因子可以通过两种方式穿过肠道屏障:屏障被破坏促炎因子穿过肠道屏障将更容易,而膜受体也能够辅助促炎因子穿过肠道屏障。级联信号的逐级扩大过程中,通常是通过微生物信号激活一组抗原呈递细胞(APC)和先天免疫细胞诱导的炎症级联反应[6, 21],这可能涉及多种促炎因子的分泌以及免疫细胞的分化。因此,在探究其致病机制时,应通过多重手段确定发挥促炎作用的促炎因子,找出促炎因子的产生源头,结合免疫反应机制,进而掌握炎症信号的传递方式和级联反应的扩大路径。

    免疫反应是由人体免疫系统通过识别到“非己”成分后,为保护机体作出攻击和排除异己成分的自发反应。菌群介导的肠道系统免疫,通常是免疫细胞为了维持肠道上皮屏障和菌群稳态即宿主健康,而产生的细胞因子等抵御病原体入侵。如T辅助细胞17(Th17)通过产生的白细胞介素IL-17A、IL-17F、IL-22刺激肠道上皮细胞(IECs)产生抗菌蛋白,以预防细胞外黏膜病原体感染[6,27-28]。菌群介导的免疫反应通常涉及T细胞反应和IL3反应[6,29-30]

    然而,菌群的失调引起的免疫细胞异常分化将诱发疾病,如代谢综合征、IBD(炎症性肠炎)或促进发生自身免疫病,如多发性硬化症、类风湿性关节炎的病症[6,30]。附着于肠道上皮的肠道共生菌群分段丝状细菌(Segmented Filamentous Bacteria, SFB)能通过上调血清淀粉样蛋白(SAA)水平、刺激Th17细胞特异性分化[25,30-31],同时促进肠道表面免疫球蛋白A(sIgA)分泌,维持肠道稳态[6,31-32]。高脂饮食可诱导SFB菌群数量减少、抑制SAA水平上调,减少Th17细胞群数量,促进代谢综合征[30]。此外,SAA还能激活固有层免疫细胞CD11c+细胞,产生白细胞介素(IL)-1β能够进一步刺激小肠上皮细胞(IEC)分泌更多SAA[6,33-35],过高水平的SAA将导致Th17过度增殖分化从而引发炎症[6]

    与上述涉及的T细胞反应不同,3型先天淋巴细胞(ILC3)在发挥抑制肠道炎症的作用[36-37]的同时,能够作为抗原呈递细胞向T细胞呈递髓鞘蛋白片段,促使T细胞攻击髓鞘、造成神经损伤,引发多发性硬化症[36]。此外,ILC3产生的IL-22能够加速Th17细胞丢失,与具有保护作用的Th17拮抗[30]

    肠道菌群介导的免疫反应是免疫细胞主导的,ILC3和T细胞涉及的免疫致病机制有显著差异,可以通过T细胞和白介素的种类、是否促进slgA分泌判断主导反应的免疫细胞类型,把握菌群介导免疫反应的机制。

    目前,经脑-肠轴的神经系统疾病致病机制的研究主要聚焦于毒素分子穿过血脑屏障作用于神经细胞[8-9]。例如孤独谱系障碍症(ASD)患者肠道菌群解毒功能受损导致血液中毒素积累,毒素通过血液循环作用于脑细胞中的线粒体,促进ASD的发病进程[38];ASD患者的肠道菌群还能刺激神经产生代谢产物5-氨基戊酸和牛磺酸,影响大脑兴奋-抑制平衡[39]。此外,IBD(炎症性肠炎)引发的LPS释放引起炎症级联反应可能会破坏血脑屏障、引起帕金森患者的脑部炎症[7-8],还将通过迷走神经传导引发焦虑抑郁[9,40]

    “对症下药”“自下而上”地从致病的分子机制入手是保证精准营养干预的关键。功能基因缺少导致的肠道稳定性弱,可以通过引入携带更多功能基因的菌群或代谢调节;从抑制促炎因子合成和传播两方面入手,才能够有效抑制促炎因子引发的炎症效应;免疫细胞分化异常导致的疾病则应该诱导分化免疫细胞正确分化,清除异常分化的免疫细胞;对于经脑-肠轴调控的神经系统疾病,采用的干预治疗策略是改变从肠道组织穿过血脑屏障的神经递质或其前体浓度,从而调节脑部活动。

    功能基因的表达异常或缺失是代谢失调的根本原因,根本解决方法在于代谢调控或引入目标功能基因。

    植物成分干预肠道菌群的代谢是最有前景的菌群干预手段之一。巴戟天寡糖(MOO)是第一个抗抑郁中药[41],其治疗策略不是直接吸收MOO药物分子,而是调控肠道中色氨酸的代谢[42-43]。MOO通过增加肠道菌群中色氨酸羟化酶水平和抑制5-羟色氨酸脱羧酶活性,在加速色氨酸产生5-羟色氨酸(5-HTP)的同时,减少血清素(5-HT)在肠道的生成,确保血液中高浓度5-HTP在穿过血脑屏障后才转化为5-HT,最大程度地实现抗抑郁疗效。类似地,富含棉子糖的食物如豆类、谷物,能够通过维持罗伊氏乳杆菌生长、将棉子糖代谢为果糖、促进肠道干细胞(ISC)增殖,从而修复肠上皮损伤[12]。此外,普洱茶中富含的茶褐素能够抑制胆盐水解酶活性、升高肠道中的胆酸水平,从而激活肝脏FXR通路、促进脂肪代谢[44];食用马铃薯可以增强淀粉代谢[45];食用丝瓜能够通过提高菌群丰度,上调循环支链氨基酸(BCAA)分解代谢酶水平,促进BCAA代谢[13]。而植物性蛋白摄入能够促进维生素、生物素等合成,有助于调节体内代谢稳定[45]

    粪菌移植(FMT)等干预手段也能通过提高功能基因种类、增强肠道菌群代谢稳定性有效治疗疾病,在治疗rCDI感染[46-47]、缓解IBD症状[48]方面都卓有成效。近年来涌现出的噬菌体靶向干预致炎基因等新策略[49],也为调控功能基因正常表达提供了新思路。

    干预调控促炎因子引发的炎症需要从抑制促炎因子的合成与传递两方面入手。

    短链脂肪酸水平降低是炎症引发的根本原因,而根本解决办法在于调控肠道菌群短链脂肪酸产生菌成为优势菌株[2]。研究表明,丁酸盐(SCFA)可通过抑制介导组蛋白去乙酰化酶活性和与G蛋白偶联受体(GPR)受体GPR41和GPR43结合,抑制促炎细胞因子以减轻炎症[50]。例如,富含多酚和类黄酮的甜茶能够通过激活丁酸-GPR43等抗炎信号级联缓解溃疡性结肠炎[51]。丁酸和次级胆汁酸能够抑制炎症相关的P-gp转录因子过度表达。此外,支链脂肪酸(BCFAs)可通过肠道细胞中蛋白质SUMO化,降低IL8在CAC02细胞中响应LPS的表达,抑制NF-κB通路从而降低促炎因子的表达。因此,通过定向培养短链脂肪酸盐产生菌能够有效抑制促炎因子的合成。石榴、葡萄、西兰花、全麦产品、咖啡等富含膳食多酚的食物能够定向富集丁酸盐产生菌[52-53];高膳食纤维饮食能够定向富集短链脂肪酸产生菌[5];麦片、大麦、蘑菇以及藻类等富含高特异性膳食纤维β-葡聚糖的食物能够促进厌氧棒状细菌和单形拟杆菌的代谢、产生更多的丁酸、丙酸代谢物[54]

    抑制促炎因子的传递则需要从肠道屏障的保护入手。过多的葡萄糖摄入、辛辣饮食、高脂饮食、食品添加剂、酒精、精神压力、昼夜节律紊乱都可导致肠道屏障破坏[55-57],而小檗碱、姜黄素、槲皮素、白藜芦醇、甘露糖以及酸奶中富含的双歧杆菌(Bifidobacterium)均有修复肠道屏障、改善肠道屏障的完整性的作用[14, 57-62]。.

    免疫细胞异常分化造成的疾病,需要从诱导分化免疫细胞正确分化和抑制免疫细胞异常分化入手。作为优质益生菌,嗜黏蛋白艾克曼菌(Akkermansia muciniphila)能够促进小鼠胰岛中的Foxp3+调节性T细胞、胰腺淋巴结中的白细胞介素IL-10和反式形成生长因子β含量升高,诱导菌群重塑从而缓解糖尿病症状[4]。此外,A. muciniphila细胞膜上的免疫调节活性的脂质磷脂酰乙醇胺(PE)能够激动非典型的TLR2-TLR1异二聚体,使弱信号被忽略、强信号被缓和,从而有助于稳态免疫[63-65]。富含鞣花单宁的石榴、蔓越莓都助于A. muciniphila在肠道中的生长。还有研究者发现,通过摄入果胶可以增强菌群衍生的芳香烃受体配体Rotγt+Tregs的生成,从而抑制肠道T细胞Th1和Th2的反应活性[66]。此外,低剂量IL-2还可系统性增强调节性T细胞的同时,影响与免疫细胞相互作用的一些菌群功能通路,例如氨基酸、短链脂肪酸和L-精氨酸的生物合成,减少免疫细胞的过度反应[67]。高异黄酮饮食能够通过抑制攻击自身的髓鞘少突胶质细胞糖蛋白(MOG)特异性的CD4+T细胞的活化增殖,缓解多发性硬化症[68]

    通过上调或下调大脑中神经递质或其前体的可用浓度,实现神经系统疾病的调节。这些神经递质或其前体来源于肠道,穿过血脑屏障从而到达脑部。例如,氨基酸是大脑中部分神经递质前体和信号传导分子。通过增加蛋白质的摄入消化吸收、提高大脑中可用的氨基酸浓度,能有效调节大脑功能[69]。3.1中提到的MOO干预肠道菌群调控抑郁症状,本质是通过提高肠道中可穿过血脑屏障的神经递质前体5-HTP浓度,增加神经递质5-HT的合成。此外,通过摄入膳食纤维可缓解便秘症状,从而改善左旋多巴胺的生物利用度,解除结肠负荷导致上消化道运动活动的反射抑制,缓解帕金森症症状[8]。即还可以通过饮食干预肠道菌群结构改善肠动力,从而通过影响肠神经系统中的反射进行神经调节。

    肠道菌群与许多疾病的发生有直接关系,探究肠道菌群的分子致病机制是定向调控肠道菌群而治愈疾病的基础。目前已有很多研究阐明了肠道菌群致病的相关机制,包括菌群之间功能基因差异导致的代谢失调、促炎因子引发炎症级联反应、菌群介导免疫细胞的异常分化以及经脑-肠轴影响大脑活动,可以通过相关的营养干预策略避免疾病的发生。相比其他干预手段,营养干预不仅副作用小,且因为摄入的营养物质将成为肠道菌群的培养基去富集目标微生物而针对性的解决疾病诱因,因此表现出显著的效果。

    然而,目前许多研究仅停留在饮食干预菌群丰度显著影响疾病指标的层面,具体作用机制尚不明确,不能证明肠道菌群与疾病的直接因果关系,无法在菌群的精准干预治疗方面取得进一步突破。未来或许可以在进行以菌群为变量的对照实验后、确证菌群与疾病强关联性的基础上,通过监测代谢、促炎因子、免疫细胞、神经递质等疾病的直接诱因上阐明菌群致病的分子机制,从而更精准的对肠道菌群引起的疾病进行干预。

  • [1] BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915−1920. doi: 10.1126/science.1104816
    [2] METWALY A, REITMEIER S, HALLER D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders[J]. Nat Rev Gastroenterol Hepatol,2022,19(6):383−397. doi: 10.1038/s41575-022-00581-2
    [3] XU X, OCANSEY D K W, HANG S, et al. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease[J]. Gut Pathog,2022,14(1):26. doi: 10.1186/s13099-022-00499-9
    [4] CANI P D, DEPOMMIER C, DERRIEN M, et al. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol,2022(10):625−637.
    [5] ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
    [6] IVANOV II, TUGANBAEV T, SKELLY A N, et al. T cell responses to the microbiota[J]. Annu Rev Immunol,2022,40:559−587. doi: 10.1146/annurev-immunol-101320-011829
    [7] PEREZ-PARDO P, DODIYA H B, ENGEN P A, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice[J]. Gut,2019,68(5):829−843. doi: 10.1136/gutjnl-2018-316844
    [8] TAN A H, LIM S Y, LANG A E. The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic[J]. Nat Rev Neurol,2022,18(8):476−495. doi: 10.1038/s41582-022-00681-2
    [9] BISGAARD T H, ALLIN K H, KEEFER L, et al. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment[J]. Nat Rev Gastroenterol Hepatol,2022,19(11):717−726. doi: 10.1038/s41575-022-00634-6
    [10] WALTER J, ARMET A M, FINLAY B B, et al. Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents[J]. Cell,2020,180(2):221−232. doi: 10.1016/j.cell.2019.12.025
    [11] ZHAO L, ZHAO N. Demonstration of causality: Back to cultures[J]. Nat Rev Gastroenterol Hepatol,2021,18(2):97−98. doi: 10.1038/s41575-020-00400-6
    [12] HOU Y, WEI W, GUAN X, et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut[J]. Nat Commun,2021,12(1):271. doi: 10.1038/s41467-020-20673-4
    [13] ZHANG L, YUE Y, SHI M, et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice[J]. Food Chem,2020,320:126648. doi: 10.1016/j.foodchem.2020.126648
    [14] VIOLI F, CAMMISOTTO V, BARTIMOCCIA S, et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease[J]. Nat Rev Cardiol, 2022: 1-14.
    [15] TURPIN W, DONG M, SASSON G, et al. Mediterranean-like dietary pattern associations with gut microbiome composition and subclinical gastrointestinal inflammation[J]. Gastroenterology,2022,163(3):685−698. doi: 10.1053/j.gastro.2022.05.037
    [16] YAO S, ZHANG M, DONG S S, et al. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression [J]. Nat Hum Behav, 2022,6(11):1569-1576.
    [17] FEI N, ZHAO L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. Isme J,2013,7(4):880−884. doi: 10.1038/ismej.2012.153
    [18] BLACHER E, BASHIARDES S, SHAPIRO H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice[J]. Nature,2019,572(7770):474−480. doi: 10.1038/s41586-019-1443-5
    [19] SIDO B, HACK V, HOCHLEHNERT A, et al. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease[J]. Gut,1998,42(4):485−492. doi: 10.1136/gut.42.4.485
    [20] CHENG M, ZHAO Y, CUI Y, et al. Stage-specific roles of microbial dysbiosis and metabolic disorders in rheumatoid arthritis[J]. Ann Rheum Dis, 2022,81(12):1669-1677.
    [21] FEI N, BRUNEAU A, ZHANG X, et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio,2020,11(1):e03263−19.
    [22] LAMAS B, RICHARD M L, LEDUCQ V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med,2016,22(6):598−605. doi: 10.1038/nm.4102
    [23] SROUR B, KORDAHI M C, BONAZZI E, et al. Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights[J]. Lancet Gastroenterol Hepatol,2022,S2468-1253(22):00169−8.
    [24] ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635−1638. doi: 10.1126/science.1110591
    [25] PRYDE S E, DUNCAN S H, HOLD G L, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiol Lett,2002,217(2):133−139. doi: 10.1111/j.1574-6968.2002.tb11467.x
    [26] LOOMBA R, SANYAL A J. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol,2013,10(11):686−690. doi: 10.1038/nrgastro.2013.171
    [27] LI J, CASANOVA J L, PUEL A. Mucocutaneous IL-17 immunity in mice and humans: Host defense vs. excessive inflammation[J]. Mucosal Immunol,2018,11(3):581−589. doi: 10.1038/mi.2017.97
    [28] OKADA S, MARKLE J G, DEENICK E K, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations[J]. Science,2015,349(6248):606−613. doi: 10.1126/science.aaa4282
    [29] HONDA K, LITTMAN D R. The microbiota in adaptive immune homeostasis and disease[J]. Nature,2016,535(7610):75−84. doi: 10.1038/nature18848
    [30] KAWANO Y, EDWARDS M, HUANG Y, et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome[J]. Cell,2022,185(19):3501−3519. doi: 10.1016/j.cell.2022.08.005
    [31] GOTO Y, PANEA C, NAKATO G, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation[J]. Immunity,2014,40(4):594−607. doi: 10.1016/j.immuni.2014.03.005
    [32] YANG Y, TORCHINSKY M B, GOBERT M, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens[J]. Nature,2014,510(7503):152−156. doi: 10.1038/nature13279
    [33] ATARASHI K, TANOUE T, ANDO M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells[J]. Cell,2015,163(2):367−380. doi: 10.1016/j.cell.2015.08.058
    [34] SANO T, HUANG W, HALL J A, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses[J]. Cell,2015,163(2):381−393. doi: 10.1016/j.cell.2015.08.061
    [35] LEE J Y, HALL J A, KROEHLING L, et al. Serum amyloid a proteins induce pathogenic th17 cells and promote inflammatory disease[J]. Cell,2020,180(1):79−91. doi: 10.1016/j.cell.2019.11.026
    [36] ZHOU W, ZHOU L, ZHOU J, et al. ZBTB46 defines and regulates ILC3s that protect the intestine[J]. Nature,2022,609(7925):159−165. doi: 10.1038/s41586-022-04934-4
    [37] GRIGG J B, SHANMUGAVADIVU A, REGEN T, et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation[J]. Nature,2021,600(7890):707−712. doi: 10.1038/s41586-021-04136-4
    [38] ZHANG M, CHU Y, MENG Q, et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children[J]. Sci Adv,2020,6(43):eaba3760. doi: 10.1126/sciadv.aba3760
    [39] SHARON G, CRUZ N J, KANG D W, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice[J]. Cell,2019,177(6):1600−1618. doi: 10.1016/j.cell.2019.05.004
    [40] LIU Y, YANG M, TANG L, et al. TLR4 regulates RORγt(+) regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila[J]. Microbiome,2022,10(1):98. doi: 10.1186/s40168-022-01296-x
    [41] ZHANG J H, XIN H L, XU Y M, et al. Morinda officinalis How. —A comprehensive review of traditional uses, phytochemistry and pharmacology[J]. J Ethnopharmacol,2018,213:230−255. doi: 10.1016/j.jep.2017.10.028
    [42] CHI L, CHEN L, ZHANG J, et al. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda officinalis[J]. J Pharm Biomed Anal,2018,156:125−132. doi: 10.1016/j.jpba.2018.04.028
    [43] ZHANG Z W, GAO C S, ZHANG H, et al. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota[J]. Acta Pharm Sin B,2022,12(8):3298−3312. doi: 10.1016/j.apsb.2022.02.032
    [44] HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun,2019,10(1):4971. doi: 10.1038/s41467-019-12896-x
    [45] BOLTE L A, VICH VILA A, IMHANN F, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome[J]. Gut,2021,70(7):1287−1298. doi: 10.1136/gutjnl-2020-322670
    [46] KE S, WEISS S T, LIU Y Y. Rejuvenating the human gut microbiome[J]. Trends Mol Med,2022,28(8):619−630. doi: 10.1016/j.molmed.2022.05.005
    [47] CHEN D, WU J, JIN D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives[J]. Int J Cancer,2019,145(8):2021−2031. doi: 10.1002/ijc.32003
    [48] KEDIA S, VIRMANI S, S K V, et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: A randomised controlled trial[J]. Gut, 2022,71(12):2401-2413.
    [49] FEDERICI S, KREDO-RUSSO S, VALDéS-MAS R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell,2022,185(16):2879−2898. doi: 10.1016/j.cell.2022.07.003
    [50] TANG S, CHEN Y, DENG F, et al. Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model[J]. Carbohydr Polym,2022,294:119776. doi: 10.1016/j.carbpol.2022.119776
    [51] HE X Q, LIU D, LIU H Y, et al. Prevention of ulcerative colitis in mice by sweet tea (Lithocarpus litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling[J]. Nutrients,2022,14(11):2208. doi: 10.3390/nu14112208
    [52] ZHAO Y, JIANG Q. Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer[J]. Adv Nutr,2021,12(2):546−565. doi: 10.1093/advances/nmaa104
    [53] PANDEY K B, RIZVI S I. Plant polyphenols as dietary antioxidants in human health and disease[J]. Oxid Med Cell Longev,2009,2(5):270−278. doi: 10.4161/oxim.2.5.9498
    [54] CANTU-JUNGLES T M, BULUT N, CHAMBRY E, et al. Dietary fiber hierarchical specificity: The missing link for predictable and strong shifts in gut bacterial communities[J]. mBio,2021,12(3):e0102821. doi: 10.1128/mBio.01028-21
    [55] ZHANG X, MONNOYE M, MARIADASSOU M, et al. Glucose but not fructose alters the intestinal paracellular permeability in association with gut inflammation and dysbiosis in mice[J]. Front Immunol,2021,12:742584. doi: 10.3389/fimmu.2021.742584
    [56] MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab,2022,33(4):247−265. doi: 10.1016/j.tem.2022.01.002
    [57] KOSINSKA A, ANDLAUER W. Modulation of tight junction integrity by food components[J]. Food Research International,2013,54(1):951−960. doi: 10.1016/j.foodres.2012.12.038
    [58] AMASHEH M, FROMM A, KRUG S M, et al. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling[J]. J Cell Sci, 2010, 123(Pt 23): 4145-4155.
    [59] SUZUKI T, HARA H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells[J]. J Nutr,2009,139(5):965−974. doi: 10.3945/jn.108.100867
    [60] MAYANGSARI Y, SUZUKI T. Resveratrol ameliorates intestinal barrier defects and inflammation in colitic mice and intestinal cells[J]. J Agric Food Chem,2018,66(48):12666−12674. doi: 10.1021/acs.jafc.8b04138
    [61] CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes,2008,57(6):1470−1481. doi: 10.2337/db07-1403
    [62] DONG L, XIE J, WANG Y, et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity[J]. Nat Commun,2022,13(1):4804. doi: 10.1038/s41467-022-32505-8
    [63] BAE M, CASSILLY C D, LIU X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses[J]. Nature,2022,608(7921):168−173. doi: 10.1038/s41586-022-04985-7
    [64] BELKAID Y, HARRISON O J. Homeostatic immunity and the microbiota[J]. Immunity,2017,46(4):562−576. doi: 10.1016/j.immuni.2017.04.008
    [65] ANSALDO E, BELKAID Y. How microbiota improve immunotherapy[J]. Science,2021,373(6558):966−967. doi: 10.1126/science.abl3656
    [66] BEUKEMA M, JERMENDI É, OERLEMANS M M P, et al. The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and Ahr activation[J]. Carbohydr Polym,2022,286:119280. doi: 10.1016/j.carbpol.2022.119280
    [67] TCHITCHEK N, NGUEKAP TCHOUMBA O, PIRES G, et al. Low-dose interleukin-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation[J]. JCI Insight,2022,7(17):e159406. doi: 10.1172/jci.insight.159406
    [68] JENSEN S N, CADY N M, SHAHI S K, et al. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis[J]. Sci Adv,2021,7(28):eabd4595. doi: 10.1126/sciadv.abd4595
    [69] EZRA-NEVO G, HENRIQUES S F, RIBEIRO C. The diet-microbiome tango: How nutrients lead the gut brain axis[J]. Curr Opin Neurobiol,2020,62:122−132. doi: 10.1016/j.conb.2020.02.005
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 刊出日期:  2023-05-15

目录

/

返回文章
返回