留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酶解与体外模拟胃肠消化对脱脂羊奶粉ACE抑制活性的影响

田维杰 马海乐 刘丹丹 陆峰 朱俊松

田维杰,马海乐,刘丹丹,等. 酶解与体外模拟胃肠消化对脱脂羊奶粉ACE抑制活性的影响[J]. 食品工业科技,2023,44(9):387−394. doi: 10.13386/j.issn1002-0306.2022090216
引用本文: 田维杰,马海乐,刘丹丹,等. 酶解与体外模拟胃肠消化对脱脂羊奶粉ACE抑制活性的影响[J]. 食品工业科技,2023,44(9):387−394. doi: 10.13386/j.issn1002-0306.2022090216
TIAN Weijie, MA Haile, LIU Dandan, et al. Effect of Enzymolysis and in Vitro Simulated Gastrointestinal Digestion on the ACE Inhibitory Activity of Defatted Goat Milk Powder[J]. Science and Technology of Food Industry, 2023, 44(9): 387−394. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090216
Citation: TIAN Weijie, MA Haile, LIU Dandan, et al. Effect of Enzymolysis and in Vitro Simulated Gastrointestinal Digestion on the ACE Inhibitory Activity of Defatted Goat Milk Powder[J]. Science and Technology of Food Industry, 2023, 44(9): 387−394. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090216

酶解与体外模拟胃肠消化对脱脂羊奶粉ACE抑制活性的影响

doi: 10.13386/j.issn1002-0306.2022090216
基金项目: 国家“863”计划:高生物利用度蛋白制备关键技术研究与开发(2013AA102203)。
详细信息
    作者简介:

    田维杰(1996−),男,硕士研究生,研究方向:功能性多肽的制备与评价,E-mail:1093283637@qq.com

    通讯作者:

    马海乐(1963−),男,博士,教授,研究方向:食品物理加工技术及装备研发,E-mail:mhl@ujs.edu.cn

  • 中图分类号: TS209

Effect of Enzymolysis and in Vitro Simulated Gastrointestinal Digestion on the ACE Inhibitory Activity of Defatted Goat Milk Powder

  • 摘要: 本研究旨在探究商业蛋白酶酶解与体外模拟胃肠消化对高消化率的脱脂羊奶粉释放ACE抑制肽的影响,以评价脱脂羊奶粉酶解必要性及所需酶解程度。采用中性蛋白酶、碱性蛋白酶、复合蛋白酶和风味蛋白酶对脱脂后的圭山羊奶粉进行酶解反应,并对脱脂羊奶粉及其酶解物进行体外模拟胃肠消化,测定酶解液及模拟胃肠消化液的多肽含量、ACE抑制活性以及分子量分布。研究发现,羊奶粉经过体外模拟胃肠消化后,消化液的多肽含量与ACE抑制率分别达到20.81 mg/mL和62.55%;而经过碱性蛋白酶和风味蛋白酶的适度酶解,其模拟胃肠消化液多肽含量与ACE抑制活性反而下降;经过复合蛋白酶的适度酶解,其模拟胃肠消化液的多肽含量与ACE抑制活性小幅度提高,分别达到22.67 mg/mL和69.29%;经过中性蛋白酶的适度酶解,其模拟胃肠消化液多肽含量与ACE抑制活性均显著提高,分别达到23.76 mg/mL和81.10%。分子量分布结果显示,经过体外模拟胃肠消化后,<1000 Da的小分子肽由酶解液中的70.77%提高到90%。综上,圭山羊奶粉经过体内胃肠消化就可以释放出较多的ACE抑制肽,而经过中性蛋白酶酶解至水解度8%后,ACE抑制活性还可以再提升28.83%,因此在一定程度上具有进一步酶解的必要性。

     

  • 图  碱性蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的多肽含量

    Figure  1.  Peptide content of alcalase hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  中性蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的多肽含量

    Figure  2.  Peptide content of neutrase hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  复合蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的多肽含量

    Figure  3.  Peptide content of protamex hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  风味蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的多肽含量

    Figure  4.  Peptide content of flavourzyme hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  碱性蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的ACE抑制活性

    Figure  5.  ACE inhibitory activity of the alcalase hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  中性蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的ACE抑制活性

    Figure  6.  ACE inhibitory activity of the neutrase hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  复合蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的ACE抑制活性

    Figure  7.  ACE inhibitory activity of the protamex hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  风味蛋白酶酶解物、模拟胃消化产物和模拟胃肠消化产物的ACE抑制活性

    Figure  8.  ACE inhibitory activity of flavourzyme hydrolysates, simulated gastric digests and simulated gastrointestinal digests

    图  中性蛋白酶酶解物及胃肠模拟消化产物分子量色谱图

    注:A为中性蛋白酶酶解物,B为酶解物的胃肠模拟消化产物。

    Figure  9.  Chromatogram of molecular weight distribution of the neutrase hydrolysates and its simulated gastrointestinal digests

    表  1  羊奶蛋白氨基酸评分

    Table  1.   Amino acid rating of goat milk protein

    必需氨基酸婴幼儿均值2~5岁儿童10~12岁儿童成人
    His1.111.521.521.80
    Ile1.422.322.325.01
    Leu1.301.832.756.37
    Lys1.231.401.855.08
    Met+Cys0.731.231.401.81
    Phe+Tyr1.201.373.934.56
    Thr1.461.852.257.00
    Val1.231.942.715.21
    Trp////
    下载: 导出CSV

    表  2  蛋白酶的酶活、最适作用条件及酶切位点

    Table  2.   Enzymatic activity, optimum reaction conditions and cleavage sites of the different proteases

    蛋白酶蛋白酶活力(U/g)最适作用条件主要酶切位点
    中性蛋白酶155153.80pH7.0; T 50 °C酶切位点较为广泛
    碱性蛋白酶220157.69pH9.0; T 50 °C疏水性氨基酸残基,
    如Ala和Leu
    复合蛋白酶184000.00pH6.5; T 50 °C酶切位点较为广泛
    风味蛋白酶26553.85pH6.5; T 50 °C酶切位点较为广泛
    注:T 温度。
    下载: 导出CSV

    表  3  羊奶粉基本成分

    Table  3.   Elementary components of goat milk powder

    指标水分灰分粗蛋白脂肪总糖
    含量(%)2.26±0.264.60±0.1920.00±0.2119.40±0.3652.00±0.34
    下载: 导出CSV

    表  4  羊奶蛋白的氨基酸组成及含量

    Table  4.   Amino acid composition and content of goat milk protein

    氨基酸含量(%)氨基酸含量(%)
    Asp7.96±0.11Ile6.51±0.10
    Thr6.30±0.09Leu12.11±0.06
    Ser4.88±0.01Tyr4.29±0.01
    Glu21.01±0.25Phe4.36±0.02
    Gly2.11±0.01His2.89±0.01
    Ala3.70±0.02Lys8.13±0.09
    Val6.77±0.06Arg3.96±0.03
    Met3.08±0.02Pro1.93±0.01
    下载: 导出CSV

    表  5  羊奶蛋白必需氨基酸及氨基酸分布

    Table  5.   Amino acid distribution and essential amino acids of goat milk protein

    氨基酸种类含量(%)
    必需氨基酸Lys、Trp、Phe、Met、Thr、Ile、Leu、Val47.27
    疏水性氨基酸Ala、Phe、Ile、Leu、Met、Pro、Val、Trp38.45
    亲水性氨基酸Ser、Thr、Tyr、Cys、Gly17.58
    酸性氨基酸Glu、Asp28.98
    碱性氨基酸Lys、Arg、His14.98
    下载: 导出CSV

    表  6  羊奶蛋白营养价值分析

    Table  6.   Nutritional value of goat milk protein

    营养评价参数评分
    E/T(%)47.27
    PER I4.75
    PER II4.58
    BV93.63
    下载: 导出CSV

    表  7  中性蛋白酶酶解物及其胃肠模拟消化产物中肽的相对分子质量分布和其分布范围

    Table  7.   Molecular weight distribution of the neutrase hydrolysates and its simulated gastrointestinal digests

    分子量范围
    (Da)
    酶解液各组分含量
    (%)
    胃肠模拟消化液各组分含量
    (%)
    >100002.830.34
    5000~100002.520.27
    3000~50003.310.78
    2000~30006.001.64
    1000~200014.576.98
    500~100019.4516.96
    180~50036.3746.43
    <18014.9526.60
    下载: 导出CSV
  • [1] ZENG Q, CAI Z X, LIU Y P, et al. A comprehensive review on bioactive peptides derived from egg proteins[J]. Food Science,2021,42(19):362−378.
    [2] LIU D, GUO Y, MA H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: A review [J/OL]. Critical Reviews in Food Science and Nutrition, 2022.https://doi.org/10.1080/10408398.2022.2054933.
    [3] WANG R X, YI L, JI R M T. Research progress on the bioactive peptides in camel milk[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):299−306.
    [4] LI H, LÜ Y, DING K, et al. Preparation and function assessment of antihypertensive peptides from food[J]. Food and Nutrition in China,2015,21(1):26−30.
    [5] LIU D, CHEN M, ZHU J, et al. A two-stage enzymolysis method and its application in exerting antioxidant activity of walnut protein[J]. Frontiers in Nutrition,2022,9:889434. doi: 10.3389/fnut.2022.889434
    [6] HUANG S, LI Y, LI C, et al. Effects of ultrasound-assisted sodium bisulfite pretreatment on the preparation of cholesterol-lowering peptide precursors from soybean protein[J]. International Journal of Biological Macromolecules,2021,183:295−304. doi: 10.1016/j.ijbiomac.2021.04.125
    [7] YANG X, LI Y L, LU F, et al. Effects of ultrasonic frequencies on ACE inhibitory activity of hydrolysate and gastrointestinal simulated digestive products from rice protein[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(3):60−66.
    [8] LIU D, GUO Y, WU P, et al. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities[J]. Food Chemistry,2019,311:125960.
    [9] LIU D, GUO Y, ZHU J, et al. The necessity of enzymatically hydrolyzing walnut protein to exert antihypertensive activity based on in vitro simulated digestion and in vivo verification[J]. Food & Function,2021,12(8):3647−3656.
    [10] KASHYAP S, SHIVAKUMAR N, SEJIAN V, et al. Goat milk protein digestibility in relation to intestinal function[J]. The American Journal of Clinical Nutrition,2021,113(4):845−853. doi: 10.1093/ajcn/nqaa400
    [11] SHU G, HUANG J, BAO C, et al. Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk[J]. Biomolecules,2019,8(4):101.
    [12] CHEN L, WANG J, SHU G, et al. Purification and production of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented goat milk[J]. Emirates Journal of Food and Agriculture,2018,30(9):742−749.
    [13] GU H F, ZHANG F X, ZHANG Y. In vitro digestion of proteins in goat milk formula[J]. Food Science,2013,34(19):302−305.
    [14] KETNAWA S, MARTINEZ A O, BENJAKUL S, et al. Gelatin hydrolysates from farmed giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion[J]. Food Chemistry,2016,192(1):34−42.
    [15] LIU D D, ZHU J S, ZHANG X L, et al. Nutritional evaluation of walnut protein and its ameliorative effect on DSS induced acute colitis in mice[J]. Science and Technology of Food Industry,2022,43(20):372−379.
    [16] YANG X, LI Y, LI S, et al. Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein[J]. Ultrasonics Sonochemistry,2017(38):19−28.
    [17] ADLERNISSEN J. Enzymic hydrolysis of food proteins[J]. Canadian Medical Association Journal,1986,172:1783−1785.
    [18] LI M, XIA S, ZHANG Y, et al. Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability[J]. LWT-Food Science and Technology,2018,98:358−365. doi: 10.1016/j.lwt.2018.08.045
    [19] JIN J, MA H, ZHOU C, et al. Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates[J]. Journal of the Science of Food and Agriculture,2015,95(12):2501−2509. doi: 10.1002/jsfa.6982
    [20] BHASKAR B, ANATHANARAYAN L, JAMDAR S. Purification, identification, and characterization of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from alcalase digested horse gram flour[J]. LWT- Food Science and Technology,2019(103):155−161.
    [21] MOHSIN A Z, SUKOR R, SELAMAT J, et al. Chemical and mineral composition of raw goat milk as affected by breed varieties available in Malaysia[J]. International Journal of Food Properties,2019,22(1):815−824. doi: 10.1080/10942912.2019.1610431
    [22] ZHENG L, REN J, SU G, et al. Comparison of in vitro digestion characteristics and antioxidant activity of hot- and cold-pressed peanut meals[J]. Food Chemistry,2013,141(4):4246−4252. doi: 10.1016/j.foodchem.2013.06.081
    [23] 邹平. 基于生物信息学与QSAR及分子对接的菜粕活性肽筛选及活性研究 [D]. 杭州: 浙江大学, 2014.

    ZOU Ping. Screening of bioactive peptides from rapeseed meal by bioinformatics, QSAR and molecular docking and research on their activity [D]. Hangzhou: Zhejiang University, 2014.
    [24] DASKAVA D C, YUCETEPE F, KARBANCIOGLU G H, et al. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants[J]. Nutrients,2017,9(4):316. doi: 10.3390/nu9040316
    [25] SHAUKAT A, NADEEM M, RANJHA M, et al. Effect of ripening and in vitro digestion on free amino acids and angiotensin I converting enzyme inhibitory (ACE-I) potential of cow and Buffalo milk cheddar cheeses[J]. International Journal of Food Properties,2022,25(1):948−959. doi: 10.1080/10942912.2022.2070200
    [26] WANG S, ZHAO M, FAN H, et al. Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits[J]. Current Opinion in Food Science,2022,48:100914. doi: 10.1016/j.cofs.2022.100914
    [27] MA H, LIU B, LI S, et al. Enzymatic preparation of rice anti-oxidation peptide[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(11):119−123.
    [28] ZAHARUDDIN N, BARKIA I, IBADULLAH W, et al. Identification, molecular docking, and kinetic studies of six novel angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from Kenaf (Hibiscus cannabinus L.) seed[J]. International Journal of Biological Macromolecules,2022,220:1512−1522. doi: 10.1016/j.ijbiomac.2022.09.142
    [29] RUI X, BOVE J I, SIMPSON B K, et al. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates[J]. Journal of Functional Foods,2013,5(3):1116−1124. doi: 10.1016/j.jff.2013.03.008
    [30] GONZALEZ M, VALLE M, ALUKO R E, et al. Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes[J]. Food Science and Human Wellness,2022,11(6):1650−1659. doi: 10.1016/j.fshw.2022.06.024
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回