留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椰子油纳米乳液制备工艺优化及其稳定性分析

黄欢 田燕 刘一哲 白新鹏

黄欢,田燕,刘一哲,等. 椰子油纳米乳液制备工艺优化及其稳定性分析[J]. 食品工业科技,2023,44(9):10−19. doi: 10.13386/j.issn1002-0306.2022100110
引用本文: 黄欢,田燕,刘一哲,等. 椰子油纳米乳液制备工艺优化及其稳定性分析[J]. 食品工业科技,2023,44(9):10−19. doi: 10.13386/j.issn1002-0306.2022100110
HUANG Huan, TIAN Yan, LIU Yizhe, et al. Optimization of Preparation Technology and Stability Analysis of Coconut Oil Nanoemulsion[J]. Science and Technology of Food Industry, 2023, 44(9): 10−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100110
Citation: HUANG Huan, TIAN Yan, LIU Yizhe, et al. Optimization of Preparation Technology and Stability Analysis of Coconut Oil Nanoemulsion[J]. Science and Technology of Food Industry, 2023, 44(9): 10−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100110

椰子油纳米乳液制备工艺优化及其稳定性分析

doi: 10.13386/j.issn1002-0306.2022100110
基金项目: 海南省重点科技计划项目(ZDYF2022XDNY146);海口市重点科技计划项目(2020-020)
详细信息
    作者简介:

    黄欢(1998−),女,硕士研究生,研究方向:油脂与蛋白质工程,E-mail:2606920139@qq.com

    通讯作者:

    白新鹏(1963−),男,博士,教授,研究方向:粮食、油脂与蛋白质工程,E-mail:xinpeng2001@126.com

  • 中图分类号: TS202.3

Optimization of Preparation Technology and Stability Analysis of Coconut Oil Nanoemulsion

  • 摘要: 为制备较为稳定的椰子油乳液,将酪蛋白酸钠(Sodium caseinate,SC)和黄原胶(Xanthan gum,XG)复合作为乳化剂,椰子油为油相,采用超声方法制备椰子油乳液。以平均粒径、Zeta-电位、离心稳定性及浊度等为考察指标,通过单因素实验筛选出超声功率、超声时间、油相质量分数和水相pH的合理研究范围。以平均粒径为响应值,用Box-Behnken响应面法对超声功率、超声时间和水相pH做进一步优化实验并对制备的乳液进行稳定性实验。结果表明,最佳制备工艺参数为:超声功率为480 W,超声时间为18 min,水相pH为7,所得椰子油纳米乳液的平均粒径为304.5±13.2 nm。所制备的椰子油纳米乳液在热处理温度40~90 ℃,pH6~8,离子浓度0~0.5 mol/L条件下具有良好的稳定性,且经3次冻融循环后乳液保持稳定,为构建用于食品加工的高稳定性椰子油乳液提供了理论支持。

     

  • 图  超声功率对乳液平均粒径(a)、Zeta-电位(b)、离心稳定性(c)和浊度(d)的影响

    注:不同小写字母表示差异显著(P<0.05);图2~图4图6~图8同。

    Figure  1.  Effect of ultrasonic power on mean particle size (a), Zeta-potential (b), centrifugal stability (c) and turbidity (d) of emulsions

    图  超声时间对乳液平均粒径(a)、Zeta-电位(b)、离心稳定性(c)和浊度(d)的影响

    Figure  2.  Effect of ultrasonic time on mean particle size (a), Zeta-potential (b), centrifugal stability (c) and turbidity (d) of emulsions

    图  油相质量分数对乳液平均粒径(a)、Zeta-电位(b)、离心稳定性(c)和浊度(d)的影响

    Figure  3.  Effect of oil phase mass fraction on mean particle size (a), Zeta-potential (b), centrifugal stability (c) and turbidity (d) of emulsions

    图  水相pH对乳液平均粒径(a)、Zeta-电位(b)、离心稳定性(c)和浊度(d)的影响

    Figure  4.  Effect of pH of aqueous phase on mean particle size (a), Zeta-potential (b), centrifugal stability (c) and turbidity (d) of emulsions

    图  两因素的交互作用对椰子油纳米乳平均粒径的影响

    Figure  5.  Effects of interactions of two factors on the average particle sizes of coconut oil-based nano-emulsions

    图  加热处理对椰子油纳米乳液平均粒径(a)和Zeta-电位(b)的影响

    Figure  6.  Effects of heating treatment on the average particle sizes (a) and Zeta-potentials (b) of coconut oil-based nano-emulsions

    图  pH对椰子油纳米乳液平均粒径(a)和Zeta-电位(b)的影响

    Figure  7.  Effects of pH on the average particle sizes (a) and Zeta-potentials (b) of coconut oil-based nano-emulsions

    图  离子强度对椰子油纳米乳液平均粒径(a)和Zeta-电位(b)的影响

    Figure  8.  Effects of ionic strength on the average particle sizes (a) and Zeta-potentials (b) of coconut oil-based nano-emulsions

    图  乳液经3次冻融循环后的表观图

    注:从左到右为1~3次循环。

    Figure  9.  Apparent diagram of emulsion after three freeze-thaw cycles

    表  1  响应面试验因素水平设计

    Table  1.   Design of factors and levels of the response surface test

    水平因素
    A超声功率(W)B超声时间(min)C水相pH
    −1400106
    0480157
    1560208
    下载: 导出CSV

    表  2  响应面试验设计及结果

    Table  2.   Design and results of response surface test

    实验号ABC平均粒径(nm)
    1000304.3±14.5
    210−1614.1±29.2
    3000308.7±13.5
    40−1−1405.4±12.5
    50−11354.2±12.8
    6−10−1474.4±32.8
    701−1370.9±11.3
    8−110392.3±4.5
    91−10589.3±42.3
    10−1−10406.7±3.2
    11011323.2±11.2
    12110495.8±20.3
    13000297.7±15.0
    14101579.4±11.0
    15−101368.0±4.2
    16000317.1±30.4
    17000301.3±15.4
    下载: 导出CSV

    表  3  回归模型的方差分析

    Table  3.   Variance analysis of regression model

    方差来源平方和自由度方差FP显著性
    模型181300920147117.56<0.0001**
    A50752.98150753.98296.14<0.0001**
    B3758.4513758.4521.930.0023**
    C72001720042.010.0003**
    AB1564.211564.29.130.0194*
    AC1285.2211285.227.50.0290*
    BC3.0613.060.0180.8974
    A21017001101700593.13<0.0001**
    B2406.651406.652.370.1674
    C29611.3219611.3256.080.0001**
    残余项1199.667171.38
    失拟项975.453325.155.80.0613
    纯误差224.21456.05
    总和18250016
    注:*代表P<0.05,差异显著;**代表P<0.01,差异极显著。
    下载: 导出CSV
  • [1] SIRIKARN P, NAWINDA C, CHUTIMA L, et al. The effect of surfactant on the physical properties of coconut oil nanoemulsions[J]. Asian Journal of Pharmaceutical Sciences,2018,13(5):409−414. doi: 10.1016/j.ajps.2018.02.005
    [2] NORULAINI N A N, SETIANTO W B, ZAIDUL I S M, et al. Effects of supercritical carbon dioxide extraction parameters on virgin coconut oil yield and medium-chain triglyceride content[J]. Food Chemistry,2009,116(1):193−197. doi: 10.1016/j.foodchem.2009.02.030
    [3] MARINA A M, MAN Y B C, AMIN I. Virgin coconut oil: Emerging functional food oil[J]. Trends in Food Science & Technology,2009,20(10):480−487.
    [4] SENEVIRATNE K N, HAPUARACHCHL C D, EKANAYAKE S. Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions[J]. Food Chemistry,2009,114(4):1444−1449. doi: 10.1016/j.foodchem.2008.11.038
    [5] SENEVIRATNE K N, DISSANAYAKE D. Variation of phenolic content in coconut oil extracted by two conventional methods[J]. International Journal of Food Science & Technology,2008,43(4):597−602.
    [6] 张建国, 李瑞, 宋晨也, 等. 初榨椰子油品质特征及其健康功效研究的进展[J]. 中国油脂,2022,47(12):84−89,118. [ZHANG J G, LI R, SONG C Y, et al. Research progress on quality characteristics and health benefit of virgin coconut oil[J]. China Oils and Fats,2022,47(12):84−89,118.
    [7] VYSAKH A, RATHEESH M, RAJMOHANAN T P, et al. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action[J]. International Immunopharmacology,2014,20(1):124−130. doi: 10.1016/j.intimp.2014.02.026
    [8] JAMJAI U, PONGPAIBUL Y, LAILERD N, et al. Antioxidant, anti-tyrosinase and anti-collagenase activities of virgin coconut oil and stability of its cream[J]. Maejo International Journal of Science and Technology,2020,14(2):166−176.
    [9] ROHMAN A, IRNAWAT I, ERWANTO Y, et al. Virgin coconut oil: Extraction, physicochemical properties, biological activities and its authentication analysis[J]. Food Reviews International,2021,37(1):46−66. doi: 10.1080/87559129.2019.1687515
    [10] 姜宗伯, 徐军, 石芬, 等. 羟丙基甲基纤维素和黄原胶浓度对初榨椰子油乳液及其模板油凝胶构建的影响[J]. 食品工业科技,2022,43(7):102−109. [JIANG Z B, XU J, SHI F, et al. Effects of hydroxypropyl methylcellulose and xanthan gum concentrations on virgin coconut oil emulsion and construction of template oleogel[J]. Science and Technology of Food Industry,2022,43(7):102−109. doi: 10.13386/j.issn1002-0306.2021070166
    [11] 李夏, 苏谕涵, 谢光杰. 椰子油微胶囊制备工艺优化及其在代餐粉中的应用[J]. 粮食与油脂,2022,35(1):87−91. [LI X, SU Y H, XIE G J. Preparation process optimization of coconut oil microcapsules and its application in meal replacement powder[J]. Cereals & Oils,2022,35(1):87−91. doi: 10.3969/j.issn.1008-9578.2022.01.020
    [12] JAISWAL M, DUDHE R, SHARMA P K. Nanoemulsion: An advanced mode of drug delivery system[J]. 3 Biotech,2015,5(2):123−127. doi: 10.1007/s13205-014-0214-0
    [13] 高巍, 白新鹏, 刘亚文, 等. 特种油脂纳米乳液超声制备工艺优化及其特性研究[J]. 食品工业科技,2020,41(16):131−139. [GAO W, BAI X P, LIU Y W, et al. Optimization of special oil nanoemulsion prepared using ultrasonic by response surface methodology and its characteristics analysis[J]. Science and Technology of Food Industry,2020,41(16):131−139.
    [14] 孙亚欣, 郑晓燕, 郑丽丽, 等. 大豆分离蛋白-茶皂素复合乳化剂制备山茶油纳米乳液及其性质研究[J]. 食品工业科技,2020,41(22):27−34, 42. [SUN Y X, ZHENG X Y, ZHENG L L, et al. Preparation of camellia oil nanoemulsion by soy protein isolate-tea saponin compound emulsifier and properties of nanoemulsion[J]. Science and Technology of Food Industry,2020,41(22):27−34, 42.
    [15] WANG C X, LI X J, SANG S Y, et al. Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by γ-cyclodextrin/sodium caseinate/alginate[J]. Food Research International,2022:160.
    [16] ZHANG M, FAN L P, LIU Y F, et al. A mechanistic investigation of the effect of dispersion phase protein type on the physicochemical stability of water-in-oil emulsions[J]. Food Research International,2022:157.
    [17] 陈玲, 张立伟, 雷芬芬, 等. 乳清分离蛋白-黄原胶复合乳化剂制备南瓜籽油O/W型乳液及其稳定性研究[J]. 中国油脂,2022,47(12):76−83. [CHEN L, ZHANG L W, LEI F F, et al. Preparation of pumpkin seed oil O/W emulsion by whey protein isolate-xanthan gum compound emulsifier and its stability[J]. China Oils and Fats,2022,47(12):76−83.
    [18] LIU X Y, XUE F, ADHIKARI B. Hemp protein isolate-polysaccharide complex coacervates and their application as emulsifiers in oil-in-water emulsions[J]. Food Hydrocolloids,2022,137:108352.
    [19] 高健. 络合—解离法提纯姜黄色素及其纳米乳液的制备[D]无锡: 江南大学, 2015

    GAO J. Curcumin purificantion via complex-dissociation and its preparation of nanoemulsions[D]. Jiangnan University, 2015.
    [20] 江连洲, 綦玉曼, 马春芳, 等. 鱼油纳米乳液运载体系构建与稳定性研究[J]. 农业机械学报,2018,49(10):387−395. [JIANG L Z, QI Y M, MA C F, et al. Formation and stability of fish oil enriched biocompatible nano-emulsion[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):387−395. doi: 10.6041/j.issn.1000-1298.2018.10.045
    [21] ZHU Z B, WEN Y, YI J H, et al. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80[J]. Journal of Colloid And Interface Science,2018,536:80−87.
    [22] PAEZ-HERNANDEZ G, MONDRAGON-CORTEZ P, ESPINOSA-ANDREWS H. Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters[J]. LWT,2019,111:291−300. doi: 10.1016/j.lwt.2019.05.012
    [23] WANG W N, WANG R Y, YAO J, et al. Effect of ultrasonic power on the emulsion stability of rice bran protein-chlorogenic acid emulsion[J]. Social Science Electronic Publishing,2022,84:105959.
    [24] 徐明进, 李明远, 彭勃, 等. Zeta电位和界面膜强度对水包油乳状液稳定性影响[J]. 应用化学,2007,24:623−627. [XU M J, LI M Y, PENG B, et al. Effects of strength of interfacial film and Zeta potential on oil-inwater emulsion stability[J]. Chinese Journal of Applied Chemistry,2007,24:623−627. doi: 10.3969/j.issn.1000-0518.2007.06.005
    [25] JIN H, WANG X Y, CHEN Z J, et al. Fabrication of β-conglycinin-stabilized nanoemulsions via ultrasound process and influence of SDS and PEG 10000 co-emulsifiers on the physicochemical properties of nanoemulsions[J]. Food Research International,2018,106(11):800−808.
    [26] MA P H, ZENG Q H, TAI K D, et al. Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on physicochemical stability[J]. LWT-Food Science and Technology,2017,84:34−46. doi: 10.1016/j.lwt.2017.04.074
    [27] ZHANG X Y, QI B K, XIE F Y, et al. Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: Influence of pH[J]. Food Hydrocoll,2021,113:106391. doi: 10.1016/j.foodhyd.2020.106391
    [28] 王曼笛, 谢岩黎, 李倩, 等. 艾草精油Pickering乳液稳定性的研究[J]. 河南工业大学学报(自然科学版),2022,43(6):67−72, 79. [WANG M D, XIE Y L, LI Q, et al. Study on the stability of Artemisia argyi essential oil Pickering emulsion[J]. Journal of Henan University of Technology (Natural Science Edition),2022,43(6):67−72, 79.
    [29] MARIA K, VASILIKI P, CONSTANTINA T. Optimization of water in olive oil nano-emulsions composition with bioactive compounds by response surface methodology[J]. LWT-Food Science and Technology,2018,89:740−748. doi: 10.1016/j.lwt.2017.11.046
    [30] JACOBS C, KAYSER O, MULLER R H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide[J]. International Journal of Pharmaceutics,2000,196(2):161−164. doi: 10.1016/S0378-5173(99)00412-3
    [31] SHARMA M, MANN B, SHARMA R, et al. Sodium caseinate stabilized clove oil nanoemulsion: Physicochemical properties[J]. Journal of Food Engineering,2017,212:38−46. doi: 10.1016/j.jfoodeng.2017.05.006
    [32] XU J, MUKHERJEE D, CHANG S K C. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization[J]. Food Chemistry,2018,240:1005−1013. doi: 10.1016/j.foodchem.2017.07.077
    [33] 万文瑜, 闫圣坤, 孔令明, 等. 核桃蛋白-多糖复合pickering乳液的制备工艺优化[J/OL]. 中国油脂: 1−9 [2022-12-30]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220615.1047.010.html

    WANG W y, YAN S k, KONG L M, et al. Optimization of walnut protein-polysccharide complex pickering emulsion[J/OL]. China Oils and Fats: 1−9 [2022-12-30]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220615.1047.010.html.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  80
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回