留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性淀粉基鲢鱼油皮克林乳液的制备及其理化特性研究

李真 王金厢 李学鹏 徐永霞 米红波 仪淑敏 励建荣 高瑞昌 张宇昊

李真,王金厢,李学鹏,等. 改性淀粉基鲢鱼油皮克林乳液的制备及其理化特性研究[J]. 食品工业科技,2023,44(9):27−37. doi: 10.13386/j.issn1002-0306.2022100272
引用本文: 李真,王金厢,李学鹏,等. 改性淀粉基鲢鱼油皮克林乳液的制备及其理化特性研究[J]. 食品工业科技,2023,44(9):27−37. doi: 10.13386/j.issn1002-0306.2022100272
LI Zhen, WANG Jinxiang, LI Xuepeng, et al. Preparation of Modified Starch-Based Silver Carp Oil Pickering Emulsion and Its Physicochemical Properties[J]. Science and Technology of Food Industry, 2023, 44(9): 27−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100272
Citation: LI Zhen, WANG Jinxiang, LI Xuepeng, et al. Preparation of Modified Starch-Based Silver Carp Oil Pickering Emulsion and Its Physicochemical Properties[J]. Science and Technology of Food Industry, 2023, 44(9): 27−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100272

改性淀粉基鲢鱼油皮克林乳液的制备及其理化特性研究

doi: 10.13386/j.issn1002-0306.2022100272
基金项目: 国家自然科学基金面上项目,鱼油Pickering乳液对鱼糜肌球蛋白凝胶持水性的影响机制(32272360)。
详细信息
    作者简介:

    李真(1997−),男,硕士研究生,研究方向:水产品贮藏与加工,E-mail:2778201667@qq.com

    通讯作者:

    李学鹏(1982−),男,博士,教授,研究方向:水产品贮藏与加工,E-mail:xuepengli8234@163.com

  • 中图分类号: TS254.4

Preparation of Modified Starch-Based Silver Carp Oil Pickering Emulsion and Its Physicochemical Properties

  • 摘要: 为提高鲢鱼鱼糜加工副产物-鲢鱼脂肪的利用率,以六种改性淀粉为固体颗粒、鲢鱼油为油相制备皮克林乳液,考察了淀粉种类、淀粉添加量(1%、2%、3%、4%、5%,w/w)、油水比(0.1、0.2、0.3、0.4、0.5、0.6,w/w)和离子强度(氯化钠浓度:0、0.1、0.2、0.3、0.4、0.5 mol/L)对乳液的理化特性(粒径、Zeta电位、乳化特性、稳定性、流变特性、微观结构)的影响。结果表明,六种改性淀粉中,辛烯基琥珀酸玉米淀粉颗粒粒径最小(146.73 nm),接触角最大(71.5°),制备的皮克林乳液最稳定。油水比和淀粉添加量显著影响了乳液的理化特性,较高的油水比(0.5~0.6)和淀粉添加量(4%~5%)使乳液表现出凝胶特性,适量(0.3~0.5 mol/L)氯化钠的添加可促进乳液微絮凝,增强乳液稳定性。乳液CLSM观察微观结构发现,乳液液滴的粒径随淀粉添加量的增加而减小,在2%~5%淀粉添加量下可观察到油滴被淀粉颗粒完全包裹,形成了致密的界面膜。油水比、淀粉添加量和氯化钠浓度分别为0.5、4%和0.4 mol/L时,乳液性能较佳。本研究可为功能性乳液配料的制备及其在功能性食品方面的应用提供参考。

     

  • 图  六种改性淀粉颗粒的粒径(A)、三相接触角(B)和制备的鲢鱼油乳液4 ℃储藏30 d的视觉外观图(C)

    注:图中不同小写字母表示差异显著P<0.05,图2图3同。

    Figure  1.  Particle sizes (A) and three-phase contact angles (B) and the visual appearance of emulsions stored at 4 ℃ for 30 days (C) of six modified starches

    图  不同影响因素下乳液的粒径和 Zeta 电位

    注:A:油水比;B:淀粉添加量;C:氯化钠浓度,图3~图9同。

    Figure  2.  Particle size and Zeta potential of emulsions under different influencing factors

    图  不同影响因素下乳液的乳化能力

    Figure  3.  Emulsification capacity of emulsions under different influencing factors

    图  不同影响因素下乳液4 ℃储藏30 d的视觉外观图

    Figure  4.  Visual appearance of emulsions stored at 4 °C for 30 days under different influencing factors

    图  不同影响因素下乳液的背散射光谱图

    注: A1~A6 分别代表油水比 0.1~0.6;B1~B5 分别代表淀粉添加量1%~5%;C1~C6 分别代表氯化钠浓度 0~0.5 mol/L。

    Figure  5.  Backscattering spectra of emulsions under different influencing factors

    图  不同影响因素下乳液的稳定性动力学指数

    Figure  6.  Stability kinetic index of emulsions under different influencing factors

    图  不同影响因素下乳液的粘度

    Figure  7.  Viscosity of emulsions under different influencing factors

    图  不同影响因素下乳液的储能模量

    Figure  8.  Energy storage modulus of emulsions under different influencing factors

    图  不同影响因素下乳液的损耗模量

    Figure  9.  Modulus of loss of emulsions under different influencing factors

    图  10  不同淀粉添加量稳定的乳液的CLSM图像(2000×)

    Figure  10.  CLSM images of Pickering emulsions stabilized with different starch additions (2000×)

  • [1] TAN Y, XU K, LIU C, et al. Fabrication of starch-based nanospheres to stabilize pickering emulsion[J]. Carbohydrate Polymers,2012,88(4):1358−1363. doi: 10.1016/j.carbpol.2012.02.018
    [2] 王然. 辛烯基琥珀酸纳米淀粉酯颗粒的制备及其食品级Pickering乳液的特性[J]. 食品科学,2019,40(20):94−99. [WANG Ran. Preparation of octenylsuccinate nano-starch ester particles and their properties of food-grade Pickering emulsion[J]. Food Science,2019,40(20):94−99. doi: 10.7506/spkx1002-6630-20190316-204
    [3] XIA T, XUE C, WEI Z H. Physicochemical characteristics, applications and research trends of edible Pickering emulsions[J]. Trends in Food Science & Technology,2021,107:1−15.
    [4] LUZ A, MARIA L H, MARIA L F. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature[J]. Food Hydrocolloids,2018,80:97−110. doi: 10.1016/j.foodhyd.2018.01.032
    [5] LI S, ZHANG B, TAN C P, et al. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism[J]. Food Hydrocolloids,2019,91:40−47. doi: 10.1016/j.foodhyd.2019.01.001
    [6] YU Z Y, JIANG S W, ZHENG Z, et al. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions[J]. International Journal of Biological Macromolecules,2019,137:277−285. doi: 10.1016/j.ijbiomac.2019.06.230
    [7] FOO M L, OOI C W, TAN K W, et al. Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch[J]. Chemosphere,2021,287:132108.
    [8] YIMER E. M., TUEM K B, KARIM A et al. Nigella sativa L. (black cumin): A promising natural remedy for wide range of illnesses[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019:1−16.
    [9] LI H, WU C C, YIN Z W, et al. Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan[J]. International Journal of Biological Macromolecules,2022,216:629−642. doi: 10.1016/j.ijbiomac.2022.07.029
    [10] YU H P, HANG G T, MA Y Q, et al. Cellulose nanocrystals based clove oil Pickering emulsion for enhanced antibacterial activity[J]. International Journal of Biological Macromolecules,2021,170:24−32. doi: 10.1016/j.ijbiomac.2020.12.027
    [11] FEREIDOON S, PRIYATHARINI A. Omega-3 polyunsaturated fatty acids and their health benefits[J]. Annual Review of Food Science and Technology,2018,9(1):345−381. doi: 10.1146/annurev-food-111317-095850
    [12] HOSSEINI R S, RAJAEI A. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise[J]. Carbohydrate Polymers,2020,241(2):116340.
    [13] REN Z Y, LI Z M, CHEN Z Z, et al. Characteristics and application of fish oil-in-water pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes[J]. Food Hydrocolloids,2021,114:106562. doi: 10.1016/j.foodhyd.2020.106562
    [14] DING M Z, ZHANG T, ZHANG H, et al. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions[J]. Food Chemistry,2020,309:125642. doi: 10.1016/j.foodchem.2019.125642
    [15] YANG M Y, YANG L L, XU J M, et al. Comparison of silver carp fin gelatins extracted by three types of methods: Molecular characteristics, structure, function, and pickering emulsion stabilization[J]. Food Chemistry,2022,368:130818. doi: 10.1016/j.foodchem.2021.130818
    [16] 李小敏. 淀粉基复合胶体颗粒皮克林乳液的构建与应用[D]. 合肥: 合肥工业大学, 2020

    LI Xiaomin. Construction and application of starch-based composite colloidal particle Pickering emulsion[D]. Hefei: Hefei University of Technology, 2020.
    [17] 王标. 鲶鱼鱼糜在不同低温贮藏下的品质及其蛋白质理化特性的研究[D]. 太原: 山西农业大学, 2019

    WANG Biao. Study on the quality of catfish surimi and its protein physicochemical properties under different low temperature storage[D]. Taiyuan: Shanxi Agricultural University, 2019.
    [18] 赵玲玲. pH、Na+及萃取剂对大豆种皮多糖乳化性影响研究[D]. 锦州: 渤海大学, 2019

    ZHAO Lingling. Effects of pH, Na+ and extractant on the emulsification of soybean seed coat polysaccharide[D]. Jinzhou: Bohai University, 2019.
    [19] LI C, LI Y X, SUN P D, et al. Pickering emulsions stabilized by native starch granules[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,431(33):142−149.
    [20] 曾海燕. 壳聚糖纳米粒子的制备及其稳定皮克林乳液的研究[D]. 无锡: 江南大学, 2015

    ZENG Haiyan. Preparation of chitosan nanoparticles and their stabilization of Pickering emulsion[D]. Wuxi: Jiangnan University, 2015.
    [21] YAN C, MCCLEMENTS D J, ZOU L Q, et al. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility[J]. Food & Function,2019,10(9):5446−5460.
    [22] BURGOS D C, WANDERSLEBEN T, OLIVOS M, et al. Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties[J]. Food Hydrocolloids,2019,87:847−857. doi: 10.1016/j.foodhyd.2018.09.018
    [23] 李星科. 壳聚糖的增稠、乳化性质及机制研究[D]. 无锡: 江南大学, 2011

    LI Xingke. Study on the thickening and emulsifying properties and mechanism of chitosan [D]. Wuxi: Jiangnan University, 2011.
    [24] STELLE K S. Lectures on supergravity p-branes[J]. Fortschritte Der Physik Progress of Physics,1997,50(10-11):1126−1172.
    [25] JI Y, KANG W, MENG L, et al. Study of the solution behavior of β-cyclodextrin amphiphilic polymer inclusion complex and the stability of its O/W emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,453:117−124.
    [26] ZHU Y Q, CHEN X, JULIAN D, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2018,39(6):826−835. doi: 10.1080/01932691.2017.1398660
    [27] FAN Z. Starch based Pickering emulsions: Fabrication, properties, and applications[J]. Trends in Food Science & Technology,2019,85:129−137.
    [28] ZHU X F, ZHENG J, LIU F, et al. Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles. Influence of ionic strength before or after emulsification[J]. Food Hydrocolloids,2018,74:37−45. doi: 10.1016/j.foodhyd.2017.07.017
    [29] LIU C K, FAN L X, YANG Y Y, et al. Characterization of surimi particles stabilized novel Pickering emulsions: Effect of particles concentration, pH and NaCl levels[J]. Food Hydrocolloids,2021,117(23):106731.
    [30] ZHU W, ZHENG F, SONG X, et al. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles[J]. Carbohydrate Polymers,2020,246:116649. doi: 10.1016/j.carbpol.2020.116649
    [31] DAI L, SUN C A, WEI Y, et al. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles[J]. Food Hydrocolloids,2018,74:239−248. doi: 10.1016/j.foodhyd.2017.07.040
  • 加载中
图(12)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回