留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物甾醇和核桃油复配的纳米结构脂质载体的制备及其稳定性研究

怀其彤 刘琳 张嘉欣 孙梦圆 常丞甫 孙正印 张峰恺 李丹 郑环宇

怀其彤,刘琳,张嘉欣,等. 植物甾醇和核桃油复配的纳米结构脂质载体的制备及其稳定性研究[J]. 食品工业科技,2023,44(9):38−44. doi: 10.13386/j.issn1002-0306.2022100279
引用本文: 怀其彤,刘琳,张嘉欣,等. 植物甾醇和核桃油复配的纳米结构脂质载体的制备及其稳定性研究[J]. 食品工业科技,2023,44(9):38−44. doi: 10.13386/j.issn1002-0306.2022100279
HUAI Qitong, LIU Lin, ZHANG Jiaxin, et al. Preparation and Stability of Nanostructured Lipid Carriers of Phytosterols with Walnut Oil[J]. Science and Technology of Food Industry, 2023, 44(9): 38−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100279
Citation: HUAI Qitong, LIU Lin, ZHANG Jiaxin, et al. Preparation and Stability of Nanostructured Lipid Carriers of Phytosterols with Walnut Oil[J]. Science and Technology of Food Industry, 2023, 44(9): 38−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100279

植物甾醇和核桃油复配的纳米结构脂质载体的制备及其稳定性研究

doi: 10.13386/j.issn1002-0306.2022100279
基金项目: 国家重点研发计划资助(2021YFD2100303)。
详细信息
    作者简介:

    怀其彤(1997−),女,硕士研究生,研究方向:粮食,油脂及植物蛋白工程,E-mail:huaiqitong@163.com

    通讯作者:

    李丹(1987−),女,硕士,研究方向:粮食,油脂及植物蛋白工程,E-mail:lidan213@126.com

    郑环宇(1975−),女,博士,研究员,研究方向:粮食,油脂及植物蛋白工程,E-mail:zhenghuanyu1@163.com

  • 中图分类号: TS229

Preparation and Stability of Nanostructured Lipid Carriers of Phytosterols with Walnut Oil

  • 摘要: 本研究通过高压均质法采用核桃油为液体脂质制备用于封装、保护植物甾醇(Phytosterol,PS)的纳米结构脂质载体(Nanostructured lipid carriers,NLC)。以平均粒径、多分散指数、Zeta电位及包封率等为主要评价指标,对制备工艺参数及配方进行优化,同时对优化后的PS-NLC进行形貌观察及稳定性研究。通过正交试验确定制备PS-NLC的最佳比例为总脂质浓度10%,硬脂酸和核桃油的比例为2:3,大豆卵磷脂浓度为1.2%。制备得到的PS-NLC外观呈球形,粒径较小且分布均匀。PS-NLC的稳定性结果表明:PS-NLC在4 ℃下储藏28 d稳定性良好;在使用时可以在5~100倍之间进行稀释,具有良好的稀释稳定性;添加2%的蔗糖对PS-NLC的冻干保护效果最佳。本文利用核桃油作为NLC的壁材为植物甾醇提供了一个合适的脂质运载系统,可为食品工业构建PS-NLC提供技术支持。

     

  • 图  不同高压均质条件对PS-NLC的粒径及PDI的影响

    注:同一指标字母不同表示差异有统计学意义(P<0.05)。

    Figure  1.  Effects of different high pressure homogenization conditions on particle size and PDI of PS-NLC

    图  不同种类的表面活性剂对PS-NLC的粒径和Zeta电位影响

    注:字母不同表示差异有统计学意义(P<0.05)。

    Figure  2.  Effects of different types of surfactants on particle size and Zeta potential of PS-NLC

    图  PS-NLC的透射电镜图

    Figure  3.  Transmission electron micrograph of PS-NLC

    图  不同处理条件PS-NLC的粒径和PDI变化

    注:(A)稀释倍数,(B)蔗糖浓度,同一指标字母不同表示差异有统计学意义(P<0.05)。

    Figure  4.  Changes in particle size and PDI of PS-NLC under different experimental conditions

    表  1  正交试验因素水平设计

    Table  1.   Orthogonal assay factors and levels

    水平因素
    A总脂质浓度(%)B固液脂质量比C表面活性剂浓度(%)
    17.54:11.2
    2103:21.4
    312.52:31.6
    下载: 导出CSV

    表  2  四种不同固体脂制备的PS-NLC的粒径、PDI及包封率

    Table  2.   Particle size, PDI and encapsulation ratio of PS-NLC prepared from four different solid lipids

    固体脂质粒径(nm)PDI包封率(%)
    棕榈酸525.43±4.631b0.357±0.013b77.10±0.116d
    硬脂酸302.90±0.794d0.238±0.011c91.09±0.115b
    山嵛酸甘油酯740.90±7.503a0.206±0.007d85.63±0.364c
    单硬脂酸甘油酯344.47±4.801c0.592±0.021a92.29±0.236a
    注:每一列上标字母不同表示均值差异显著(P<0.05),字母相同表示均值差异不显著(P>0.05);表4同。
    下载: 导出CSV

    表  3  L9(34)正交试验设计及结果

    Table  3.   L9(34) orthogonal experiment design and results

    试验号总脂质浓度(%)固液脂质量比表面活性剂浓度(%)包封率(%)
    17.54:11.285.85
    27.53:21.488.68
    37.52:31.684.58
    4104:11.487.24
    5103:21.686.43
    6102:31.293.97
    712.54:11.684.39
    812.53:21.291.77
    912.52:31.490.88
    K186.37085.82790.530
    K289.21388.96088.933
    K389.01389.81085.133
    R2.8433.9835.937
    下载: 导出CSV

    表  4  4 ℃下储存28 d的PS-NLC的粒径、PDI和Zeta电位

    Table  4.   Particle size, PDI and Zeta potential of PS-NLC stored at 4 ℃ for 28 days

    储藏时间(d)粒径(nm)PDIZeta电位(mV)
    0313.23±0.666d0.248±0.003d−35.23±0.057b
    7339.80±1.646a0.253±0.005c−34.67±0.208a
    14322.63±2.843c0.236±0.003e−35.30±0.361b
    21319.73±1.193c0.267±0.003b−35.83±0.208c
    28327.93±2.409b0.288±0.005a−36.10±0.264c
    下载: 导出CSV
  • [1] LAURA C B, ESCOLA-GIL J C, BLANCO-VACA F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism[J]. Atherosclerosis,2009,203(1):18−31. doi: 10.1016/j.atherosclerosis.2008.06.026
    [2] MAKHMUDOVA U, SCHULZE P C, LUTJOHANN D, et al. Phytosterols and cardiovascular disease[J]. Current Atherosclerosis Reports,2021,23(11):68. doi: 10.1007/s11883-021-00964-x
    [3] RIDEOUT T C, CHAN Y M, HARDING S V, et al. Low and moderate-fat plant sterol fortified soymilk in modulation of plasma lipids and cholesterol kinetics in subjects with normal to high cholesterol concentrations: Report on two randomized crossover studies[J]. Lipids in Health and Disease,2009,8:45. doi: 10.1186/1476-511X-8-45
    [4] UBEYITOGULLARI A, CIFTCI O N. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods[J]. Food Research International,2019,123:27−35. doi: 10.1016/j.foodres.2019.04.014
    [5] ZHOU S J, HAN L, LU K Y, et al. Whey protein isolate-phytosterols nanoparticles: Preparation, characterization, and stabilized food-grade pickering emulsions[J]. Food Chemistry,2022,384:132486. doi: 10.1016/j.foodchem.2022.132486
    [6] CAO W J, OU S Y, LIN W F, et al. Food protein-based phytosterol nanoparticles: Fabrication and characterization[J]. Food Function,2016,7(9):3973−3780. doi: 10.1039/C6FO00861E
    [7] ZHONG Q X, ZHANG L H. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications[J]. Advances in Colloid and Interface Science,2019,273:102033. doi: 10.1016/j.cis.2019.102033
    [8] SALVI V R, PAWAR P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier[J]. Journal of Drug Delivery Science and Technology,2019,51:255−267. doi: 10.1016/j.jddst.2019.02.017
    [9] GABA B, FAZIL M, KHAN S, et al. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride[J]. Bulletin of Faculty of Pharmacy, Cairo University,2015,53(2):147−159. doi: 10.1016/j.bfopcu.2015.10.001
    [10] 朱子昊, 卢晓明. 纳米结构脂质载体的制备、表征及其在食品领域的研究进展[J]. 中国食品学报,2021,21(12):311−322. [ZHU Z H, LU X M. A Preparation and characterization of nanostructured lipid carriers and their research progress in food[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):311−322. doi: 10.16429/j.1009-7848.2021.12.034
    [11] CHAMUNDEESWARI M, JESLIN J, VERMA M L. Nanocarriers for drug delivery applications[J]. Environmental Chemistry Letters,2018,17(2):849−865.
    [12] KERGOMARD J, PABOEUF G, BAROUH N, et al. Stability to oxidation and interfacial behavior at the air/water interface of minimally-processed versus processed walnut oil-bodies[J]. Food Chemistry,2021,360:129880. doi: 10.1016/j.foodchem.2021.129880
    [13] ZHOU D, PAN Y, YE J, et al. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil[J]. LWT-Food Science and Technology,2017,83:292−297. doi: 10.1016/j.lwt.2017.05.029
    [14] GAO P, LIU R J, JIN Q Z, et al. Effects of processing methods on the chemical composition and antioxidant capacity of walnut (Juglans regia L.) oil[J]. LWT-Food Science and Technology,2021,135:109958. doi: 10.1016/j.lwt.2020.109958
    [15] YU Y J, WANG T, GONG Y H, et al. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine[J]. Ultrasonics Sonochemistry,2022,83:105945. doi: 10.1016/j.ultsonch.2022.105945
    [16] 李飞. 具有美白护肤潜力的川芎挥发油纳米结构脂质载体的制备[D]. 成都: 西华大学, 2022

    LI Fei. Preparation of Chuanxiong Rhizoma volatile oil nanostructured lipid carriers with skin-whitening potential[D]. Chengdu: Xihua University, 2022.
    [17] VARSHOSAZ J, ESKANDARI S, TABBAKHIAN M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants[J]. Carbohydrate Polymers,2012,88(4):1157−1163. doi: 10.1016/j.carbpol.2012.01.051
    [18] LIU X L, CHEN L Q, KANG Y N, et al. Cinnamon essential oil nanoemulsions by high-pressure homogenization: Formulation, stability, and antimicrobial activity[J]. LWT-Food Science and Technology,2021,147:111660. doi: 10.1016/j.lwt.2021.111660
    [19] JAFARI S M, HE Y H, BHANDARI B. Optimization of nano-emulsions production by microfluidization[J]. European Food Research and Technology,2006,225(5-6):733−741.
    [20] ZHAO Y, REN Y, ZHANG R C, et al. Preparation of hydrogenated soybean oil of high oleic oil with supported catalysts[J]. Food Bioscience,2018,22:91−98. doi: 10.1016/j.fbio.2018.01.010
    [21] AKHOOND ZARDINI A, MOHEBBI M, FARHOOSH R, et al. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification[J]. Journal of Food Science and Technology,2018,55(1):287−298. doi: 10.1007/s13197-017-2937-5
    [22] PIMENTEL-MORAL S, TEIXEIRA M C, FERNANDES A R, et al. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology[J]. Journal of Drug Delivery Science and Technology,2019,49:660−667. doi: 10.1016/j.jddst.2018.12.023
    [23] SCHREINER T B, SANTAMARIA-ECHART A, RIBEIRO A, et al. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark[J]. Molecules,2020,25(7):1538. doi: 10.3390/molecules25071538
    [24] HE W, LU Y, QI J P, et al. Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs[J]. International Journal of Pharmaceutics,2013,441(1-2):269−278. doi: 10.1016/j.ijpharm.2012.11.033
    [25] HYUN J E, YI H Y, HONG G P, et al. Digestion stability of curcumin-loaded nanostructured lipid carrier[J]. LWT-Food Science and Technology,2022,162:113474. doi: 10.1016/j.lwt.2022.113474
    [26] BASHIRI S, GHANBARZADEH B, AYASEH A, et al. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity[J]. LWT-Food Science and Technology,2020,119:108836. doi: 10.1016/j.lwt.2019.108836
    [27] LACATUSU I, BADEA N, STAN R, et al. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol[J]. Nanotechnology,2012,23(45):455702. doi: 10.1088/0957-4484/23/45/455702
    [28] SHEVALKAR G, VAVIA P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe[J]. Journal of Drug Delivery Science and Technology,2019,53:101211. doi: 10.1016/j.jddst.2019.101211
    [29] LIN Y W, YIN W T, LIU G Q. Development and characterisation of a novel krill oil nanostructured lipid carrier based on 1, 3-glycerol distearate[J]. International Journal of Food Science & Technology,2020,55(11):3493−3502.
    [30] GENOVESE D B, LOZANO J E, RAO M A. The rheology of colloidal and noncolloidal food dispersions[J]. Journal of Food Science,2007,72(2):11−20. doi: 10.1111/j.1750-3841.2006.00253.x
    [31] BOYD R D, PICHAIMUTHU S K, CUENAT A. New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,387(1-3):35−42.
    [32] SANTOS V D S, BRAZ B B, SILVA A A, et al. Nanostructured lipid carriers loaded with free phytosterols for food applications[J]. Food Chemistry,2019,298:125053. doi: 10.1016/j.foodchem.2019.125053
    [33] AZIZI M, KIERULF A, CONNIE LEE M, et al. Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers[J]. Food Chemistry,2018,246:448−456. doi: 10.1016/j.foodchem.2017.12.009
    [34] TAMJIDI F, SHAHEDI M, VARSHOSAZ J, et al. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems[J]. Journal of the Science of Food and Agriculture,2018,98(2):511−518. doi: 10.1002/jsfa.8488
    [35] CUI Z R, HSU C H, MUMPER R J. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles[J]. Drug Development and Industrial Pharmacy,2003,29(6):689−700. doi: 10.1081/DDC-120021318
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回